Improving the classification of brain tumors in mice with perturbation enhanced (PE)-MRSI

作者: Rui Vasco Simões , Sandra Ortega-Martorell , Teresa Delgado-Goñi , Yann Le Fur , Martí Pumarola

DOI: 10.1039/C2IB00079B

关键词: Text miningInternal medicineAcute hyperglycemiaStatistical patternHuman brainOncologyMedicineEcho timeOligodendrogliomaTraining setGlioblastoma

摘要: Classifiers based on statistical pattern recognition analysis of MRSI data are becoming important tools for the non-invasive diagnosis human brain tumors. Here we investigate potential interest perturbation-enhanced (PE-MRSI), in this case acute hyperglycemia, improving discrimination between mouse MRS patterns glioblastoma multiforme (GBM), oligodendroglioma (ODG), and non-tumor parenchyma (NT). Six GBM-bearing mice three ODG-bearing were scanned at 7 Tesla by PRESS-MRSI with 12 136 ms echo-time, during euglycemia (Eug) also induced hyperglycemia (Hyp), generating altogether four datasets per animal (echo time + glycemic condition): 12Eug, 136Eug, 12Hyp, 136Hyp. For classifier development all spectral vectors (spv) selected from matrix unit length normalized (UL2) used either as a training set (76 GBM spv, mice; 70 ODG two 54 NT spv) or an independent testing (61 31 ODG, one mouse; 23 spv). All Fisher's LDA classifiers obtained evaluated far their descriptive performance—correctly classified cases (bootstrapping)—and predictive accuracy—balanced error rate classification. MRSI-based 12Hyp consistently more efficient separating GBM, regions, overall accuracies always >80% up to 95–96%; remaining within 48–85% range. This was confirmed user-independent selection sets, using leave-one-out (LOO). highlights protocols characterization preclinical

参考文章(31)
Globus My, Busto R, Sternau Ll, Ginsberg, Dietrich Wd, Therapeutic modulation of brain temperature: relevance to ischemic brain injury. Cerebrovascular and brain metabolism reviews. ,vol. 4, pp. 189- 225 ,(1992)
Fabien Szabo De Edelenyi, Christophe Rubin, François Estève, Sylvie Grand, Michel Décorps, Virgine Lefournier, Jean-François Le Bas, Chantal Rémy, A new approach for analyzing proton magnetic resonance spectroscopic images of brain tumors: nosologic images. Nature Medicine. ,vol. 6, pp. 1287- 1289 ,(2000) , 10.1038/81401
David N. Louis, WHO classification of tumours of the central nervous system International Agency for Research on Cancer. ,(2007)
Christopher M. Bishop, Pattern Recognition and Machine Learning ,(2006)
Ken Aldape, Michael J. Burns, Michael F. Wendland, William A. Weiss, Mark A. Israel, Mark A. Israel, Hiroko Kuriyama, Tim Roberts, John R. Hill, John R. Hill, Christopher Hackett, Nagato Kuriyama, Nadezhda Milshteyn, Ron DePinho, Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Research. ,vol. 63, pp. 1589- 1595 ,(2003)
M E Trautmann, C B Wollheim, Characterization of glucose transport in an insulin-secreting cell line. Biochemical Journal. ,vol. 242, pp. 625- 630 ,(1987) , 10.1042/BJ2420625
Jan Luts, Arend Heerschap, Johan A.K. Suykens, Sabine Van Huffel, A combined MRI and MRSI based multiclass system for brain tumour recognition using LS-SVMs with class probabilities and feature selection Artificial Intelligence in Medicine. ,vol. 40, pp. 87- 102 ,(2007) , 10.1016/J.ARTMED.2007.02.002
Mark C Preul, Zografos Caramanos, D Louis Collins, Jean-Guy Villemure, Richard Leblanc, Andre Olivier, Ronald Pokrupa, Douglas L Arnold, None, Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nature Medicine. ,vol. 2, pp. 323- 325 ,(1996) , 10.1038/NM0396-323
Alfredo Vellido, Paulo J.G. Lisboa, Handling outliers in brain tumour MRS data analysis through robust topographic mapping Computers in Biology and Medicine. ,vol. 36, pp. 1049- 1063 ,(2006) , 10.1016/J.COMPBIOMED.2005.09.004
Christoph M. Segebarth, Danielle F. Balériaux, Peter R. Luyten, Jan A. Den Hollander, Detection of metabolic heterogeneity of human intracranial tumors in vivo by 1H NMR spectroscopic imaging. Magnetic Resonance in Medicine. ,vol. 13, pp. 62- 76 ,(1990) , 10.1002/MRM.1910130108