Prediction of soil macro- and micro-elements in sieved and ground air-dried soils using laboratory-based hyperspectral imaging technique

作者: Mohammad Malmir , Iman Tahmasbian , Zhihong Xu , Michael B. Farrar , Shahla Hosseini Bai

DOI: 10.1016/J.GEODERMA.2018.12.049

关键词: ZincSoil waterManganeseSoil texturePhosphorusSoil scienceMaterials scienceHyperspectral imagingSoil testPartial least squares regression

摘要: Abstract Hyperspectral image analysis in laboratory-based settings has the potential to estimate soil elements. This study aimed explore effects of particle size on element estimation using visible-near infrared (400–1000 nm) hyperspectral imaging. Images were captured from 116 sieved and ground samples. Data acquired images (HSI) used develop partial least square regression (PLSR) models predict available aluminum (Al), boron (B), calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), phosphorus (P) zinc (Zn). The Al, Fe, K, Mn, Na P not predicted with high precision. However, developed PLSR B (R2CV = 0.62 RMSECV = 0.15), Ca (R2CV = 0.81 RMSECV = 260.97), Cu (R2CV = 0.74 RMSECV = 0.27), Mg (R2CV = 0.80 RMSECV = 43.71) Zn (R2CV = 0.76 RMSECV = 0.97) soils. reflectance also for (R2CV = 0.53 RMSECV = 0.16), RMSECV = 260.79), (R2CV = 0.73 RMSECV = 0.29), (R2CV = 0.79 RMSECV = 45.45) RMSECV = 0.97). RMSE different models, soils corresponding elements did significantly differ based Levene's test. Therefore, this indicated that it was necessary grind samples HSI.

参考文章(76)
Ingunn Burud, Christophe Moni, Andreas Flo, Cecilia Futsaether, Markus Steffens, Daniel P. Rasse, Qualitative and quantitative mapping of biochar in a soil profile using hyperspectral imaging. Soil & Tillage Research. ,vol. 155, pp. 523- 531 ,(2016) , 10.1016/J.STILL.2015.06.020
Bo Stenberg, Raphael A. Viscarra Rossel, Abdul Mounem Mouazen, Johanna Wetterlind, Visible and near infrared spectroscopy in soil science Advances in Agronomy. ,vol. 107, pp. 163- 215 ,(2010) , 10.1016/S0065-2113(10)07005-7
P. R. S. Vendrame, R. L. Marchão, D. Brunet, T. Becquer, The potential of NIR spectroscopy to predict soil texture and mineralogy in Cerrado Latosols European Journal of Soil Science. ,vol. 63, pp. 743- 753 ,(2012) , 10.1111/J.1365-2389.2012.01483.X
Agnar Höskuldsson, PLS regression methods Journal of Chemometrics. ,vol. 2, pp. 211- 228 ,(1988) , 10.1002/CEM.1180020306
Per Stenborg, JoséA.M. Demattê, Suzana Romeiro Araújo, Mats Söderström, Jan Eriksson, Christian Isendahl, Determining soil properties in Amazonian Dark Earths by reflectance spectroscopy Geoderma. ,vol. 237, pp. 308- 317 ,(2015) , 10.1016/J.GEODERMA.2014.09.014
Cécile Gomez, Philippe Lagacherie, Guillaume Coulouma, Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis–NIR data Geoderma. ,vol. 189-190, pp. 176- 185 ,(2012) , 10.1016/J.GEODERMA.2012.05.023
Yunzhao Wu, Jun Chen, Xinmin Wu, Qingjiu Tian, Junfeng Ji, Zhihao Qin, Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils Applied Geochemistry. ,vol. 20, pp. 1051- 1059 ,(2005) , 10.1016/J.APGEOCHEM.2005.01.009