The Mahalanobis kernel for heritability estimation in genome-wide association studies: fixed-effects and random-effects methods

作者: Lee H. Dicker , Ruijun Ma

DOI:

关键词: Kernel (statistics)Generalized linear mixed modelLinkage disequilibriumHeritabilityMathematicsEuclidean distanceRandom effects modelMahalanobis distanceStatisticsGenetic association

摘要: Linear mixed models (LMMs) are widely used for heritability estimation in genome-wide association studies (GWAS). In standard approaches to with LMMs, a genetic relationship matrix (GRM) must be specified. GWAS, the GRM is frequently correlation estimated from study population's genotypes, which corresponds normalized Euclidean distance kernel. this paper, we show that reliance on kernel contributes several unresolved modeling inconsistencies GWAS. These can cause biased estimates presence of linkage disequilibrium (LD), depending distribution causal variants. We these biases resolved (at least at level) if one adopts Mahalanobis distance-based LMM analysis. Additionally, propose new definition partitioned -- attributable subset genes or single nucleotide polymorphisms (SNPs) using GRM, and it inherits many nice consistency properties identified our original Partitioned relatively area GWAS analysis, where inconsistency issues related LD have previously been known especially pernicious.

参考文章(48)
Charles R Henderson, Applications of linear models in animal breeding Published in <b>1984</b> in Guelph by University of Guelph. ,(1984)
P. C. Mahalanobis, On the generalized distance in statistics Proceedings of the National Institute of Sciences (Calcutta). ,vol. 2, pp. 49- 55 ,(1936)
Anna Bonnet, Elisabeth Gassiat, Céline Lévy-Leduc, Heritability estimation in high dimensional sparse linear mixed models Electronic Journal of Statistics. ,vol. 9, pp. 2099- 2129 ,(2015) , 10.1214/15-EJS1069
Hilary K Finucane, Brendan Bulik-Sullivan, Alexander Gusev, Gosia Trynka, Yakir Reshef, Po-Ru Loh, Verneri Anttila, Han Xu, Chongzhi Zang, Kyle Farh, Stephan Ripke, Felix R Day, ReproGen Consortium, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Raci Consortium, Shaun Purcell, Eli Stahl, Sara Lindstrom, John RB Perry, Yukinori Okada, Soumya Raychaudhuri, Mark J Daly, Nick Patterson, Benjamin M Neale, Alkes L Price, None, Partitioning heritability by functional annotation using genome-wide association summary statistics Nature Genetics. ,vol. 47, pp. 1228- 1235 ,(2015) , 10.1038/NG.3404
T. H. E. Meuwissen, M. E. Goddard, B. J. Hayes, Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps Genetics. ,vol. 157, pp. 1819- 1829 ,(2001) , 10.1093/GENETICS/157.4.1819
J. K. Haseman, R. C. Elston, The investigation of linkage between a quantitative trait and a marker locus Behavior Genetics. ,vol. 2, pp. 3- 19 ,(1972) , 10.1007/BF01066731
Greg Gibson, Rare and common variants: twenty arguments Nature Reviews Genetics. ,vol. 13, pp. 135- 145 ,(2012) , 10.1038/NRG3118
Arthur R. Gilmour, Robin Thompson, Brian R. Cullis, Average information REML: An efficient algorithm for variance parameter estimation in linear mixed models Biometrics. ,vol. 51, pp. 1440- 1450 ,(1995) , 10.2307/2533274
Alkes L. Price, Noah A. Zaitlen, David Reich, Nick Patterson, New approaches to population stratification in genome-wide association studies Nature Reviews Genetics. ,vol. 11, pp. 459- 463 ,(2010) , 10.1038/NRG2813
Noah Zaitlen, Peter Kraft, Heritability in the genome-wide association era Human Genetics. ,vol. 131, pp. 1655- 1664 ,(2012) , 10.1007/S00439-012-1199-6