Heritability estimation in high dimensional sparse linear mixed models

作者: Anna Bonnet , Elisabeth Gassiat , Céline Lévy-Leduc

DOI: 10.1214/15-EJS1069

关键词:

摘要: Motivated by applications in genetic fields, we propose to estimate the heritability high-dimensional sparse linear mixed models. The determines how variance is shared between different random components of a model. main novelty our approach consider that effects can be sparse, may contain null components, but do not know either their proportion or positions. estimator strongly inspired one proposed Pirinen, Donnelly and Spencer (2013), based on maximum likelihood approach. We also study theoretical properties estimator, namely establish root n-consistent when both number observations n N tend infinity under mild assumptions. prove satisfies central limit theorem which gives as byproduct confidence interval for heritability. Some Monte-Carlo experiments are conducted order show finite sample performances estimator.

参考文章(20)
Bruce Walsh, Michael Lynch, Genetics and Analysis of Quantitative Traits ,(1996)
Yingying Fan, Runze Li, Variable selection in linear mixed effects models arXiv: Statistics Theory. ,(2012) , 10.1214/12-AOS1028
Arthur R. Gilmour, Robin Thompson, Brian R. Cullis, Average information REML: An efficient algorithm for variance parameter estimation in linear mixed models Biometrics. ,vol. 51, pp. 1440- 1450 ,(1995) , 10.2307/2533274
H. D. PATTERSON, R. THOMPSON, Recovery of inter-block information when block sizes are unequal Biometrika. ,vol. 58, pp. 545- 554 ,(1971) , 10.1093/BIOMET/58.3.545
Jian Yang, S. Hong Lee, Michael E. Goddard, Peter M. Visscher, GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics. ,vol. 88, pp. 76- 82 ,(2011) , 10.1016/J.AJHG.2010.11.011
V A Marčenko, L A Pastur, DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES Mathematics of The Ussr-sbornik. ,vol. 1, pp. 457- 483 ,(1967) , 10.1070/SM1967V001N04ABEH001994
Greg C. G. Wei, Martin A. Tanner, A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms Journal of the American Statistical Association. ,vol. 85, pp. 699- 704 ,(1990) , 10.1080/01621459.1990.10474930
D. Golan, S. Rosset, Accurate estimation of heritability in genome wide studies using random effects models intelligent systems in molecular biology. ,vol. 27, pp. 317- 323 ,(2011) , 10.1093/BIOINFORMATICS/BTR219
Hyun Min Kang, Noah A. Zaitlen, Claire M. Wade, Andrew Kirby, David Heckerman, Mark J. Daly, Eleazar Eskin, Efficient Control of Population Structure in Model Organism Association Mapping Genetics. ,vol. 178, pp. 1709- 1723 ,(2008) , 10.1534/GENETICS.107.080101
Jian Yang, Beben Benyamin, Brian P McEvoy, Scott Gordon, Anjali K Henders, Dale R Nyholt, Pamela A Madden, Andrew C Heath, Nicholas G Martin, Grant W Montgomery, Michael E Goddard, Peter M Visscher, Common SNPs explain a large proportion of the heritability for human height Nature Genetics. ,vol. 42, pp. 565- 569 ,(2010) , 10.1038/NG.608