Systems Analysis of High-Throughput Data

作者: Rosemary Braun

DOI: 10.1007/978-1-4939-2095-2_8

关键词: DNA microarrayBiologyGenomicsSystems analysisContext (language use)Computational biologyInteraction networkSystems biologyDomain knowledgeBiological pathway

摘要: Modern high-throughput assays yield detailed characterizations of the genomic, transcriptomic, and proteomic states biological samples, enabling us to probe molecular mechanisms that regulate hematopoiesis or give rise hematological disorders. At same time, high dimensionality data complex nature interaction networks present significant analytical challenges in identifying causal variations modeling underlying systems biology. In addition significantly disregulated genes proteins, integrative analysis approaches allow investigation these single within a functional context are required. This chapter presents survey current computational for statistical high-dimensional development systems-level models cellular signaling regulation. Specifically, we focus on multi-gene methods integration expression with domain knowledge (such as pathways) other gene-wise information (e.g., sequence methylation data) identify novel modules network.

参考文章(131)
Rafael Irizarry, Vincent Carey, Wolfgang Huber, Sandrine Dudoit, Robert Gentleman, Bioinformatics and Computational Biology Solutions Using R and Bioconductor (Statistics for Biology and Health) Springer-Verlag New York, Inc.. ,(2005)
Giovanni Parmigiani, Elizabeth S. Garrett, Rafael A. Irizarry, Scott L. Zeger, The Analysis of Gene Expression Data: An Overview of Methods and Software Statistics for Biology and Health. pp. 1- 45 ,(2003) , 10.1007/0-387-21679-0_1
Ramón Díaz-Uriarte, Sara Alvarez de Andrés, Gene selection and classification of microarray data using random forest BMC Bioinformatics. ,vol. 7, pp. 3- 3 ,(2006) , 10.1186/1471-2105-7-3
Robert Gentleman, Vincent J Carey, Wolfgang Huber, Rafael A Irizarry, Sandrine Dudoit, Bioinformatics and Computational Biology Solutions Using R and Bioconductor ,(2006)
G. K. Smyth, limma: Linear Models for Microarray Data Springer, New York, NY. pp. 397- 420 ,(2005) , 10.1007/0-387-29362-0_23
Stefano Monti, Pablo Tamayo, Jill Mesirov, Todd Golub, Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data Machine Learning. ,vol. 52, pp. 91- 118 ,(2003) , 10.1023/A:1023949509487
Igor Kononenko, Marko Robnik-Sikonja, An adaptation of Relief for attribute estimation in regression international conference on machine learning. pp. 296- 304 ,(1997)
James Franklin, The elements of statistical learning : data mining, inference,and prediction The Mathematical Intelligencer. ,vol. 27, pp. 83- 85 ,(2005) , 10.1007/BF02985802
Fan R K Chung, Spectral Graph Theory ,(1996)