Spectral Line Selection for HMI: A Comparison of Fe I 6173 Å and Ni I 6768 Å

作者: A. A. Norton , J. Pietarila Graham , R. K. Ulrich , J. Schou , S. Tomczyk

DOI: 10.1007/S11207-006-0279-Y

关键词: Magnetic fieldEquivalent widthComputational physicsPhysicsTelescopePolarimeterSpectral lineLine pairField strengthStellar magnetic fieldOptics

摘要: We present a study of two spectral lines, Fe I 6173 A and Ni 6768 A, that were candidates to be used in the Helioseismic Magnetic Imager (HMI) for observing Doppler velocity vector magnetic field. The line profiles studied using Mt. Wilson Observatory, Advanced Stokes Polarimeter Kitt Peak-McMath Pierce telescope one-meter Fourier transform spectrometer atlas. Both have clean continua no blends threaten instrument performance. is 2% deeper, 15% narrower, has 6% smaller equivalent width than line. potential each recover pre-assigned solar conditions tested least-squares minimization technique fit Milne-Eddington models tens thousands been sampled at five positions across Overall, better performance vector-magnetic-field retrieval. Specifically, able determine field strength, longitudinal transverse flux four times more accurately active regions. Inclination azimuthal angles can recovered ≈2° above 600 Mx cm−2 1000 I. Therefore, determines magnetic-field orientation plage, whereas both lines provide good determination penumbrae umbrae. selected use HMI due its diagnostics while not sacrificing information. one exception arises when high strengths combine with velocities move beyond effective sampling range. higher geff means useful range values regions strong

参考文章(22)
J. O. Stenflo, S. K. Solanki, Models of solar magnetic fluxtubes - Constraints imposed by Fe I and II lines Astronomy and Astrophysics. ,vol. 148, pp. 123- 132 ,(1985)
Jonathan D. Graham, Arturo López Ariste, Hector Socas-Navarro, Steven Tomczyk, Inference of Solar Magnetic Field Parameters from Data with Limited Wavelength Sampling Solar Physics. ,vol. 208, pp. 211- 232 ,(2002) , 10.1023/A:1020577605073
B. W. Lites, R. Casini, Solar Polarization 4 Solar Polarization 4. ,vol. 358, ,(2006)
J. H. M. J. Bruls, The formation of helioseismology lines. IV - The NI I 676.8 NM intercombination line Astronomy and Astrophysics. ,vol. 269, pp. 509- 517 ,(1993)
D. G. Hummer, G. B. Rybicki, An accelerated lambda iteration method for multilevel radiative transfer. I - Non-overlapping lines with background continuum Astronomy and Astrophysics. ,vol. 245, pp. 171- 181 ,(1991)
Roger K. Ulrich, Scott Evans, John E. Boyden, Larry Webster, Mount Wilson Synoptic Magnetic Fields: Improved Instrumentation, Calibration, and Analysis Applied to the 2000 July 14 Flare and to the Evolution of the Dipole Field Astrophysical Journal Supplement Series. ,vol. 139, pp. 259- 279 ,(2002) , 10.1086/337948
H. Uitenbroek, Multilevel Radiative Transfer with Partial Frequency Redistribution The Astrophysical Journal. ,vol. 557, pp. 389- 398 ,(2001) , 10.1086/321659
P. Maltby, E. H. Avrett, M. Carlsson, O. Kjeldseth-Moe, R. L. Kurucz, R. Loeser, A new sunspot umbral model and its variation with the solar cycle The Astrophysical Journal. ,vol. 306, pp. 284- 303 ,(1986) , 10.1086/164342
J. C. Del Toro Iniesta, B. Ruiz Cobo, Stokes Profiles Inversion Techniques Solar Physics. ,vol. 164, pp. 169- 182 ,(1996) , 10.1007/978-94-009-0231-2_13