Online Learning of Noisy Data with Kernels

作者: Shai Shalev-Shwartz , Nicolò Cesa-Bianchi , Ohad Shamir

DOI:

关键词: Online machine learningGaussian functionNoise (video)AlgorithmArtificial intelligenceEstimatorFunction (mathematics)PolynomialPattern recognitionBounded functionGradient descentComputer science

摘要: We study online learning when individual instances are corrupted by adversarially chosen random noise. assume the noise distribution is unknown, and may change over time with no restriction other than having zero mean bounded variance. Our technique relies on a family of unbiased estimators for non-linear functions, which be independent interest. show that variant gradient descent can learn functions in any dot-product (e.g., polynomial) or Gaussian kernel space analytic convex loss function. uses randomized estimates need to query number noisy copies each instance, where high probability this upper constant. Allowing such multiple queries cannot avoided: Indeed, we general impossible only one copy instance accessed.

参考文章(10)
Nicolo Cesa-Bianchi, Gabor Lugosi, Prediction, learning, and games ,(2006)
陳佩君, Support Vector Machines ,(2008)
Michael Kearns, Ming Li, Learning in the Presence of Malicious Errors SIAM Journal on Computing. ,vol. 22, pp. 807- 837 ,(1993) , 10.1137/0222052
H. Brendan McMahan, Adam Tauman Kalai, Abraham D. Flaxman, Online convex optimization in the bandit setting: gradient descent without a gradient symposium on discrete algorithms. pp. 385- 394 ,(2005) , 10.5555/1070432.1070486
Nicholas Littlestone, Redundant noisy attributes, attribute errors, and linear-threshold learning using winnow conference on learning theory. pp. 147- 156 ,(1991) , 10.5555/114836.114850
Nader H. Bshouty, Jeffrey C. Jackson, Christino Tamon, Uniform-distribution attribute noise learnability Information & Computation. ,vol. 187, pp. 277- 290 ,(2003) , 10.1016/S0890-5401(03)00135-4
S. A. Goldman, R. H. Sloan, Can PAC learning algorithms tolerate random attribute noise Algorithmica. ,vol. 14, pp. 70- 84 ,(1995) , 10.1007/BF01300374
N. Cesa-Bianchi, A. Conconi, C. Gentile, On the generalization ability of on-line learning algorithms IEEE Transactions on Information Theory. ,vol. 50, pp. 2050- 2057 ,(2004) , 10.1109/TIT.2004.833339
Liam Paninski, Estimation of entropy and mutual information Neural Computation. ,vol. 15, pp. 1191- 1253 ,(2003) , 10.1162/089976603321780272
B Scholkopfand, A Smola, Learning with Kernels european conference on machine learning. ,(2002)