Taylor Polynomial Estimator for Estimating Frequency Moments

作者: Sumit Ganguly

DOI: 10.1007/978-3-662-47672-7_44

关键词:

摘要: We present a randomized algorithm for estimating the pth moment \(F_p\) of frequency vector data stream in general update (turnstile) model to within multiplicative factor \(1 \pm \epsilon \), \(p > 2\), with high constant confidence. For \(0 < \le 1\), uses space \(O( n^{1-2/p} ^{-2} + ^{-4/p} \log (n))\) words. This improves over current bound \(O(n^{1-2/p} ^{-2-4/p} words by Andoni et. al. [2]. Our upper matches lower Li and Woodruff [17] \(\epsilon = (\log (n))^{-\varOmega (1)}\) [3] \varOmega (1)\).

参考文章(24)
Yi Li, David P. Woodruff, A Tight Lower Bound for High Frequency Moment Estimation with Small Error Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. pp. 623- 638 ,(2013) , 10.1007/978-3-642-40328-6_43
Noam Nisan, Psuedorandom Generators for Space-Bounded Computation symposium on the theory of computing. pp. 204- 212 ,(1990)
Moses Charikar, Kevin Chen, Martin Farach-Colton, Finding Frequent Items in Data Streams international colloquium on automata languages and programming. ,vol. 312, pp. 693- 703 ,(2002) , 10.1016/S0304-3975(03)00400-6
Shai Shalev-Shwartz, Nicolò Cesa-Bianchi, Ohad Shamir, Online Learning of Noisy Data with Kernels arXiv: Learning. ,(2010)
Vladimir Braverman, Rafail Ostrovsky, Recursive Sketching For Frequency Moments arXiv: Data Structures and Algorithms. ,(2010)
Alexandr Andoni, Huy L. Nguyễn, Yury Polyanskiy, Yihong Wu, Tight Lower Bound for Linear Sketches of Moments Automata, Languages, and Programming. pp. 25- 32 ,(2013) , 10.1007/978-3-642-39206-1_3
Piotr Indyk, David Woodruff, Optimal Approximations of the Frequency Moments ,(2004)
N. Nisan, Pseudorandom generators for space-bounded computations symposium on the theory of computing. pp. 204- 212 ,(1990) , 10.1145/100216.100242
Alexandr Andoni, Robert Krauthgamer, Krzysztof Onak, Streaming Algorithms via Precision Sampling 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science. pp. 363- 372 ,(2011) , 10.1109/FOCS.2011.82
Sumit Ganguly, Lakshminath Bhuvanagiri, Hierarchical Sampling from Sketches: Estimating Functions over Data Streams Algorithmica. ,vol. 53, pp. 549- 582 ,(2009) , 10.1007/S00453-008-9260-5