作者: EUGENE H. BUDER
DOI: 10.1177/009365091018002003
关键词: Set (psychology) 、 Chaotic 、 Mathematics 、 Variety (cybernetics) 、 Simple (abstract algebra) 、 Statistical physics 、 Social relation 、 Artificial intelligence 、 Stability theory 、 Nonlinear system
摘要: This article presents a dynamic model of dyadic social interaction. It is shown that set simple deterministic arithmetic operations representing basic assumptions about social-involvement behavior can lead to variety complex outcomes, including asymptotically stable behavior, self-sustaining periodic and chaotic behavior. These outcomes illustrate the emergence macroscopic interaction-level properties from microscopic individual-level rules.