A Nonlinear Dynamic Model of Social Interaction

作者: EUGENE H. BUDER

DOI: 10.1177/009365091018002003

关键词: Set (psychology)ChaoticMathematicsVariety (cybernetics)Simple (abstract algebra)Statistical physicsSocial relationArtificial intelligenceStability theoryNonlinear system

摘要: This article presents a dynamic model of dyadic social interaction. It is shown that set simple deterministic arithmetic operations representing basic assumptions about social-involvement behavior can lead to variety complex outcomes, including asymptotically stable behavior, self-sustaining periodic and chaotic behavior. These outcomes illustrate the emergence macroscopic interaction-level properties from microscopic individual-level rules.

参考文章(23)
Ralph L. Levine, Hiram E. Fitzgerald, Analysis of Dynamic Psychological Systems Springer US. ,(1992) , 10.1007/978-1-4615-6440-9
Stan A. Kaplowitz, Edward L. Fink, Dynamics of Attitude Change Springer, Boston, MA. pp. 341- 369 ,(1992) , 10.1007/978-1-4615-6440-9_14
Gerald R. Miller, Explorations in interpersonal communication Sage Publications. ,(1976)
Barry M. Lester, Joel Hoffman, T. Berry Brazelton, The rhythmic structure of mother-infant interaction in term and preterm infants. Child Development. ,vol. 56, pp. 15- 27 ,(1985) , 10.2307/1130169
Stan A. Kaplowitz, Edward L. Fink, Connie L. Bauer, A dynamic model of the effect of discrepant information on unidimensional attitude change Systems Research and Behavioral Science. ,vol. 28, pp. 233- 250 ,(1983) , 10.1002/BS.3830280306