Remarks About the Dynamics of the Solitary Waves

作者: Luis Vázquez

DOI: 10.1007/978-1-4613-0787-7_28

关键词: Charge (physics)Dynamics (mechanics)Classical mechanicsNonlinear systemPhysical quantityPartial differential equationMagnetic momentDispersion (water waves)MomentumPhysics

摘要: The solitary waves appear as solutions of nonlinear partial differential equations which modelate three large classes physical phenomena [1,2]: a) Propagation in continuous media, b) Condensed matter physics, c) Particle physics. characteristic properties the are following: 1. Constance time their wave form and velocity. 2. They represent structures do not spread: effect dispersion is compensated by nonlinearity. 3. In framework classical extended particles, localizations energy, momentum, charge, magnetic moment well other quantities.

参考文章(13)
Antonio F. Rañada, Classical Nonlinear Dirac Field Models of Extended Particles Springer Netherlands. pp. 271- 291 ,(1983) , 10.1007/978-94-009-7086-1_9
Quantum theory, groups, fields, and particles D. Reidel , Sold and distributed in the U.S.A. and Canada by Kluwer Boston. ,(1983) , 10.1007/978-94-009-7086-1
Jalal Shatah, Walter Strauss, Instability of nonlinear bound states Communications in Mathematical Physics. ,vol. 100, pp. 173- 190 ,(1985) , 10.1007/BF01212446
Thierry Cazenave, Luis Vazquez, Existence of localized solutions for a classical nonlinear Dirac field Communications in Mathematical Physics. ,vol. 105, pp. 35- 47 ,(1986) , 10.1007/BF01212340
Pedro J. Pascual, Luis Vázquez, Sine-Gordon solitons under weak stochastic perturbations Physical Review B. ,vol. 32, pp. 8305- 8311 ,(1985) , 10.1103/PHYSREVB.32.8305
F.G. Bass, Yu.S. Kivshar, V.V. Konotop, Yu.A. Sinitsyn, Dynamics of solitons under random perturbations Physics Reports. ,vol. 157, pp. 63- 181 ,(1988) , 10.1016/0370-1573(88)90015-4
J. C. Eilbeck, J. D. Gibbon, R. K. Dodd, H. C. Morris, Solitons and Nonlinear Wave Equations ,(1982)
J. C. Ariyasu, A. R. Bishop, Space-time pattern formation and conversion in the dc-driven, damped sine-Gordon equation. Physical Review B. ,vol. 35, pp. 3207- 3213 ,(1987) , 10.1103/PHYSREVB.35.3207
H. Berestycki, P. -L. Lions, Nonlinear scalar field equations, I existence of a ground state Archive for Rational Mechanics and Analysis. ,vol. 82, pp. 313- 345 ,(1983) , 10.1007/BF00250555
Haim Brezis, Elliott H. Lieb, Minimum action solutions of some vector field equations Communications in Mathematical Physics. ,vol. 96, pp. 97- 113 ,(1984) , 10.1007/BF01217349