Dynamics of solitons under random perturbations

作者: F.G. Bass , Yu.S. Kivshar , V.V. Konotop , Yu.A. Sinitsyn

DOI: 10.1016/0370-1573(88)90015-4

关键词:

摘要: Abstract The dynamics of solitons is investigated in media with randomly inhomogeneous and fluctuating parameters. Some exact results the theory nonlinear stochastic waves are given. An analysis made various approximate approaches, e.g. mean field method Born approximation. Special attention paid to perturbation technique based on inverse scattering transform construction most adequate for solitons. described formalism used investigate evolution wave (soliton) parameters, statistical characteristics radiation generated by analysed also. same approach makes it possible take into account simultaneous effect random regular (e.g., friction) perturbations Examples given situations arising when one describes real physical systems.

参考文章(99)
R. Rajaraman, Solitons and instantons ,(1982)
A. P. Malozemoff, J. C. Slonczewski, Magnetic domain walls in bubble materials ,(1979)
George L. Lamb (jr.), Elements of soliton theory New York. pp. 29- ,(1980)
Michael A. Collins, Solitons in Chemical Physics Advances in Chemical Physics. ,vol. 53, pp. 225- 339 ,(2007) , 10.1002/9780470142776.CH3
V. Ya. Antonchenko, A. S. Davydov, A. V. Zolotariuk, Solitons and proton motion in ice‐like structures Physica Status Solidi B-basic Solid State Physics. ,vol. 115, pp. 631- 640 ,(1983) , 10.1002/PSSB.2221150234
Kenneth J. Plotkin, A. R. George, Propagation of weak shock waves through turbulence Journal of Fluid Mechanics. ,vol. 54, pp. 449- 467 ,(1972) , 10.1017/S0022112072000795
J. F. Currie, J. A. Krumhansl, A. R. Bishop, S. E. Trullinger, Statistical mechanics of one-dimensional solitary-wave-bearing scalar fields: Exact results and ideal-gas phenomenology Physical Review B. ,vol. 22, pp. 477- 496 ,(1980) , 10.1103/PHYSREVB.22.477
D. J. Kaup, A Perturbation Expansion for the Zakharov–Shabat Inverse Scattering Transform Siam Journal on Applied Mathematics. ,vol. 31, pp. 121- 133 ,(1976) , 10.1137/0131013