An explicit Chebyshev pseudospectral multigrid method for incompressible Navier–Stokes equations

作者: W. Zhang , C.H. Zhang , G. Xi

DOI: 10.1016/J.COMPFLUID.2009.08.001

关键词: Computational fluid dynamicsNumerical analysisMathematicsApplied mathematicsMathematical optimizationIterative methodMultigrid methodRunge–Kutta methodsChebyshev pseudospectral methodBurgers' equationNavier–Stokes equationsGeneral EngineeringGeneral Computer Science

摘要: Abstract The two-dimensional steady incompressible Navier–Stokes equations in the form of primitive variables have been solved by Chebyshev pseudospectral method. pressure and velocities are coupled artificial compressibility method NS pseudotime with an explicit four-step Runge–Kutta integrator. In order to reduce computational time cost, we propose spectral multigrid algorithm full approximation storage (FAS) scheme implement it through V-cycle (FMG) strategies. Four iterative methods designed including single grid method; FMG accuracy efficiency numerical validated three test problems: modified one-dimensional Burgers equation; Taylor vortices lid driven cavity flow. results fit well exact or benchmark solutions. can be maintained as ones, while cost is greatly reduced latter. For flow problem, proved most efficient one among four methods. A speedup nearly two orders magnitude achieved three-level at least two-level

参考文章(39)
Lloyd N. Trefethen, Spectral Methods in MATLAB ,(2000)
Wilhelm Heinrichs, Thorsten Kattelans, A direct solver for the least-squares spectral collocation system on rectangular elements for the incompressible Navier-Stokes equations Journal of Computational Physics. ,vol. 227, pp. 4776- 4796 ,(2008) , 10.1016/J.JCP.2008.01.025
Murli M. Gupta, Ram P. Manohar, Ben Noble, Nature of viscous flows near sharp corners Computers & Fluids. ,vol. 9, pp. 379- 388 ,(1981) , 10.1016/0045-7930(81)90009-8
Thor Gjesdal, Carl Erik Wasberg, Bjørn Anders Pettersson Reif, Spectral element benchmark simulations of natural convection in two-dimensional cavities International Journal for Numerical Methods in Fluids. ,vol. 50, pp. 1297- 1319 ,(2006) , 10.1002/FLD.1121
Hwar C Ku, Richard S Hirsh, Thomas D Taylor, A Pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations Journal of Computational Physics. ,vol. 70, pp. 439- 462 ,(1987) , 10.1016/0021-9991(87)90190-2
Thomas A Zang, Yau Shu Wong, M.Y Hussaini, Spectral multigrid methods for elliptic equations II Journal of Computational Physics. ,vol. 54, pp. 489- 507 ,(1982) , 10.1016/0021-9991(82)90063-8
Hwar C. Ku, Thomas D. Taylor, Richard S. Hirsh, Pseudospectral methods for solution of the incompressible navier-stokes equations Computers & Fluids. ,vol. 15, pp. 195- 214 ,(1987) , 10.1016/S0045-7930(87)80004-X
Krastan Krastev, Michael Schäfer, A multigrid pseudo-spectral method for incompressible Navier–Stokes flows Comptes Rendus Mecanique. ,vol. 333, pp. 59- 64 ,(2005) , 10.1016/J.CRME.2004.09.016
A. JAMESON, WOLFGANG SCHMIDT, ELI TURKEL, Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes 14th Fluid and Plasma Dynamics Conference. pp. 1259- 1281 ,(1981) , 10.2514/6.1981-1259