A Solvable Model for Scattering on a Junction and a Modified Analytic Perturbation Procedure

作者: B. Pavlov

DOI: 10.1007/978-3-0346-0183-2_11

关键词: Quantum mechanicsQuantum networkBounded functionScatteringQuantumScattering theorySchrödinger equationBoundary value problemMathematicsMathematical analysisElectron

摘要: We consider a one-body spin-less electron spectral problem for resonance scattering system constructed of quantum well weakly connected to noncompact exterior reservoir, where the is free. The simplest kind network, with reservoir composed few disjoint cylindrical wires, and Schrodinger equation on real bounded potential wells constant wires. propose Dirichlet-to-Neumann-based analysis reveal nature conductance across star-shaped element network (a junction), derive an approximate formula matrix junction, construct fitted zero-range solvable model junction interpret phenomenological parameter arising in Datta- Das Sarma boundary condition, see [14], T-junctions. also using as first step modified analytic perturbation procedure calculation corresponding matrix.

参考文章(70)
Gunther Uhlmann, John Sylvester, The Dirichlet to Neumann map and applications SIAM proceedings series list, Inverse Problems in Partial Differential Equations, Humboldt State University, Arcata, California. ,(1989)
I. A. Shelykh, N. G. Galkin, N. T. Bagraev, Quantum splitter controlled by Rasha spin-orbit coupling Physical Review B. ,vol. 72, ,(2005) , 10.1103/PHYSREVB.72.235316
D.K. Gramotnev, D.F.P. Pile, Double-resonant extremely asymmetrical scattering of electromagnetic waves in non-uniform periodic arrays Optical and Quantum Electronics. ,vol. 32, pp. 1097- 1124 ,(2000) , 10.1023/A:1007081419880
I︠u︡. N. Demkov, V. N. Ostrovskiĭ, Zero-range potentials and their applications in atomic physics ,(1988)
Vadym Adamyan, Boris Pavlov, Local Scattering Problem and a Solvable Model of Quantum Network Birkhäuser Basel. pp. 1- 10 ,(2009) , 10.1007/978-3-0346-0180-1_1
Ráj Mittra, S. W. Lee, Analytical techniques in the theory of guided waves Macmillan Series in Electrical Science. ,(1971)
Fritz Gesztesy, Yuri Latushkin, Marius Mitrea, Maxim Zinchenko, Non-self-adjoint operators, infinite determinants, and some applications arXiv: Spectral Theory. ,(2005)
A. B. Mikhailova, B. S. Pavlov, Remark on the Compensation of Singularities in Krein’s Formula Methods of Spectral Analysis in Mathematical Physics. pp. 325- 337 ,(2008) , 10.1007/978-3-7643-8755-6_16