Modified Krein Formula and Analytic Perturbation Procedure for Scattering on Arbitrary Junction

作者: V. Adamyan , B. Pavlov , A. Yafyasov

DOI: 10.1007/978-3-7643-9919-1_3

关键词:

摘要: The single-electron transport through a junction of quantum network is modeled as specific scattering problem for the Schrodinger operator on system semi-infinite cylindrical domains (quantum wires) short-circuited by compact domain well or dot). For calculation one-body parameters any having form with piece-wise smooth boundary and attached thin wires semi-analytic perturbation procedure based specially selected intrinsic large parameter suggested. approximate matrix obtained in this way corresponding solvable model.

参考文章(43)
Gunther Uhlmann, John Sylvester, The Dirichlet to Neumann map and applications SIAM proceedings series list, Inverse Problems in Partial Differential Equations, Humboldt State University, Arcata, California. ,(1989)
Vadim Adamyan, Scattering Matrices for Micro Schemes Birkhäuser, Basel. pp. 1- 10 ,(1992) , 10.1007/978-3-0348-8606-2_1
Boris Pavlov, S-Matrix and Dirichlet-to-Neumann Operators Scattering. pp. 1678- 1688 ,(2002) , 10.1016/B978-012613760-6/50092-9
I. A. Shelykh, N. G. Galkin, N. T. Bagraev, Quantum splitter controlled by Rasha spin-orbit coupling Physical Review B. ,vol. 72, ,(2005) , 10.1103/PHYSREVB.72.235316
I︠u︡. N. Demkov, V. N. Ostrovskiĭ, Zero-range potentials and their applications in atomic physics ,(1988)
Ráj Mittra, S. W. Lee, Analytical techniques in the theory of guided waves Macmillan Series in Electrical Science. ,(1971)
Fritz Gesztesy, Yuri Latushkin, Marius Mitrea, Maxim Zinchenko, Non-self-adjoint operators, infinite determinants, and some applications arXiv: Spectral Theory. ,(2005)
F. Gesztesy, R. Nowell, W. Pötz, One-dimensional scattering theory for quantum systems with nontrivial spatial asymptotics Differential and Integral Equations. ,vol. 10, pp. 521- 546 ,(1997)
Richard Courant, David Hilbert, Methods of Mathematical Physics ,(1947)
A. Mikhailova, B. Pavlov, L. Prokhorov, Modelling of Quantum Networks arXiv: Mathematical Physics. ,(2003)