Stochastic Differential Equation Models of Fisheries in an Uncertain World: Extinction Probabilities, Optimal Fishing Effort, and Parameter Estimation

作者: Carlos A. Braumann

DOI: 10.1007/978-3-642-93287-8_28

关键词: Stochastic differential equationEconometricsFishingPopulation sizeGeographyExtinction probabilityGompertz functionConstant (mathematics)NoiseStatisticsEstimation theory

摘要: Logistic and Gompertz models of population growth, with, an extra terato allow for fishing under constant quotas, effort, mixed policies, are considered Stochastic fluctuations environmental conditions added as noise terms. Ultimate extinction occurs with probability one quotas or but not moderate effort policies. For we show that the efforts maximize expected yield close to ones obtained in deterministic if small. Conditions on order control size dropping below some critical threshold studied. Maximum likelihood techniques parameter estimation based data developed models.

参考文章(9)
Nonlinear stochastic problems D. Reidel Pub. : Sold and distributed in the U.S.A. and Canada by Kluwer Boston. ,(1983) , 10.1007/978-94-009-7142-4
T. T. Soong, J. L. Bogdanoff, Random Differential Equations in Science and Engineering Journal of Applied Mechanics. ,vol. 41, pp. 1148- 1148 ,(1974) , 10.1115/1.3423466
Alan Gleit, Optimal harvesting in continuous time with stochastic growth Mathematical Biosciences. ,vol. 41, pp. 111- 123 ,(1978) , 10.1016/0025-5564(78)90069-X
Robert M. May, J.R. Beddington, J.W. Horwood, J.G. Shepherd, Exploiting natural populations in an uncertain world Mathematical Biosciences. ,vol. 42, pp. 219- 252 ,(1978) , 10.1016/0025-5564(78)90097-4
J. R. BEDDINGTON, R. M. MAY, Harvesting natural populations in a randomly fluctuating environment. Science. ,vol. 197, pp. 463- 465 ,(1977) , 10.1126/SCIENCE.197.4302.463
C BRAUMANN, Population growth in random environments Bulletin of Mathematical Biology. ,vol. 45, pp. 635- 641 ,(1983) , 10.1016/S0092-8240(83)80016-0
B. Dennis, G.P. Patil, The gamma distribution and weighted multimodal gamma distributions as models of population abundance Bellman Prize in Mathematical Biosciences. ,vol. 68, pp. 187- 212 ,(1984) , 10.1016/0025-5564(84)90031-2
Donald A. McQuarrie, Handbook of Mathematical Functions American Journal of Physics. ,vol. 34, pp. 177- 177 ,(1966) , 10.1119/1.1972842