On physical interpretations of fractional integration and differentiation

作者: R. S. Rutman

DOI: 10.1007/BF02070871

关键词: Fractional programmingFractional calculusAsymptotic errorLinear filterFractalRegularization (physics)VariablesMathematicsCalculusFractional-order system

摘要: Is there a relation between fractional calculus and fractal geometry? Can a fractional order system be represented by a causal dynamical model? These are the questions recently …

参考文章(11)
R. S. Rutman, On Numerical Integration Differentiation of Fractional Order: a Systems Theory Approach Theory and Practice of Geophysical Data Inversion. pp. 49- 71 ,(1992) , 10.1007/978-3-322-89417-5_4
S.G. MIKHLIN, SINGULAR INTEGRAL EQUATIONS Multidimensional Singular Integrals and Integral Equations. pp. 157- 198 ,(1965) , 10.1016/B978-0-08-010852-0.50011-6
Rudolf Gorenflo, Sergio Vessella, Abel Integral Equations: Analysis and Applications ,(1991)
R. R. Nigmatullin, Fractional integral and its physical interpretation Theoretical and Mathematical Physics. ,vol. 90, pp. 242- 251 ,(1992) , 10.1007/BF01036529
R. S. ANDERSSEN, Stable Procedures for the Inversion of Abel′s Equation Ima Journal of Applied Mathematics. ,vol. 17, pp. 329- 342 ,(1976) , 10.1093/IMAMAT/17.3.329
Roman S. Rutman, On the paper by R. R. Nigmatullin “fractional integral and its physical interpretation” Theoretical and Mathematical Physics. ,vol. 100, pp. 1154- 1156 ,(1994) , 10.1007/BF01018580