Inference for Treatment Regime Models in Personalized Medicine

作者: Adam Kapelner , Zachary D. Cohen , Justin Bleich , Richard Berk , Robert J. DeRubeis

DOI:

关键词: InferenceRandomized experimentComputer scienceStatistical modelNull (SQL)Patient characteristicsData miningOutcome (game theory)Personalized medicineRegression analysisDomain knowledge

摘要: In medical practice, when more than one treatment option is viable, there little systematic use of individual patient characteristics to estimate which most likely result in a better outcome for the patient. We introduce new framework using statistical models personalized medicine. Our exploits (1) data from randomized comparative trial, and (2) regression model constructed domain knowledge no requirement correct specification. "improvement" measure summarizing extent model's allocations improve future subject outcomes on average compared business-as-usual allocation approach. Procedures are provided estimating this as well asymptotically valid confidence intervals. One may also test null scenario hypothesized not useful demonstrate our method's promise simulated experiment testing treatments depression. An open-source software implementation procedures available within R package "Personalized Treatment Evaluator" currently CRAN PTE.

参考文章(41)
James M. Robins, Optimal Structural Nested Models for Optimal Sequential Decisions Springer, New York, NY. pp. 189- 326 ,(2004) , 10.1007/978-1-4419-9076-1_11
Robert Tibshirani, Trevor Hastie, Jerome H. Friedman, The Elements of Statistical Learning ,(2001)
Bradley Efron, Thomas J. DiCiccio, Bootstrap Confidence Intervals Statistical Science. ,vol. 11, pp. 189- 228 ,(1996) , 10.1214/SS/1032280214
Baqun Zhang, Anastasios A. Tsiatis, Marie Davidian, Min Zhang, Eric Laber, Estimating optimal treatment regimes from a classification perspective Stat. ,vol. 1, pp. 103- 114 ,(2012) , 10.1002/STA.411
Eric B. Laber, Daniel J. Lizotte, Bradley Ferguson, Set-valued dynamic treatment regimes for competing outcomes. Biometrics. ,vol. 70, pp. 53- 61 ,(2014) , 10.1111/BIOM.12132
Lacey Gunter, Ji Zhu, Susan Murphy, Variable Selection for Qualitative Interactions in Personalized Medicine While Controlling the Family-Wise Error Rate Journal of Biopharmaceutical Statistics. ,vol. 21, pp. 1063- 1078 ,(2011) , 10.1080/10543406.2011.608052
William E. Evans, Mary V. Relling, Moving towards individualized medicine with pharmacogenomics Nature. ,vol. 429, pp. 464- 468 ,(2004) , 10.1038/NATURE02626
Craig A. Rolling, Yuhong Yang, Model selection for estimating treatment effects Journal of the Royal Statistical Society: Series B (Statistical Methodology). ,vol. 76, pp. 749- 769 ,(2014) , 10.1111/RSSB.12043
Jason Brinkley, Anastasios Tsiatis, Kevin J. Anstrom, A Generalized Estimator of the Attributable Benefit of an Optimal Treatment Regime Biometrics. ,vol. 66, pp. 512- 522 ,(2010) , 10.1111/J.1541-0420.2009.01282.X