Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles.

作者: P. Spinelli , A. Polman

DOI: 10.1364/OE.20.00A641

关键词: Amorphous solidOptoelectronicsSemiconductorAbsorbanceMaterials scienceAbsorption (electromagnetic radiation)Plasmonic nanoparticlesOhmic contactSurface plasmon resonancePlasmon

摘要: Metal nanoparticles are efficient antennas for light. If embedded in a semiconductor material, they can enhance light absorption the semiconductor, due to strong plasmonic near-field coupling. We use numerical simulations calculate enhancement using Ag with diameters range 5-60 nm crystalline Si, amorphous polymer blend, and Fe2O3. study single particles 100×100×100 volume, as well periodic arrays 100 pitch. find that all cases Ohmic dissipation metal is major factor. In while cause 5-fold of absorbance weakly absorbing near-bandgap spectral range, losses dominate absorption. conclude Si cannot be sensitized practical way. Similar results found The blend enhanced by up 100% nanoparticles, at expense additional losses. Amorphous mismatch between plasmon resonance bandgap a-Si. By sensitization thickness some materials reduced keeping same absorbance, which has benefits short carrier diffusion lengths. Scattering mechanisms beneficial trapping solar cells not considered this paper.

参考文章(32)
Carl Hägglund, Michael Zäch, Göran Petersson, Bengt Kasemo, Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons Applied Physics Letters. ,vol. 92, pp. 053110- ,(2008) , 10.1063/1.2840676
P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, Optical impedance matching using coupled plasmonic nanoparticle arrays Nano Letters. ,vol. 11, pp. 1760- 1765 ,(2011) , 10.1021/NL200321U
Howard R. Stuart, Dennis G. Hall, Absorption enhancement in silicon‐on‐insulator waveguides using metal island films Applied Physics Letters. ,vol. 69, pp. 2327- 2329 ,(1996) , 10.1063/1.117513
Harry A. Atwater, Albert Polman, Plasmonics for improved photovoltaic devices Nature Materials. ,vol. 9, pp. 205- 213 ,(2010) , 10.1038/NMAT2629
Nathan C. Lindquist, Wade A. Luhman, Sang-Hyun Oh, Russell J. Holmes, Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells Applied Physics Letters. ,vol. 93, pp. 123308- ,(2008) , 10.1063/1.2988287
S. Mokkapati, F. J. Beck, A. Polman, K. R. Catchpole, Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells Applied Physics Letters. ,vol. 95, pp. 053115- ,(2009) , 10.1063/1.3200948
D. Derkacs, S. H. Lim, P. Matheu, W. Mar, E. T. Yu, Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles Applied Physics Letters. ,vol. 89, pp. 093103- ,(2006) , 10.1063/1.2336629
P Spinelli, V E Ferry, J van de Groep, M van Lare, M A Verschuuren, R E I Schropp, H A Atwater, A Polman, Plasmonic light trapping in thin-film Si solar cells Journal of Optics. ,vol. 14, pp. 024002- ,(2012) , 10.1088/2040-8978/14/2/024002
Seok-Soon Kim, Seok-In Na, Jang Jo, Dong-Yu Kim, Yoon-Chae Nah, Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles Applied Physics Letters. ,vol. 93, pp. 073307- ,(2008) , 10.1063/1.2967471
Carl Hägglund, Michael Zäch, Bengt Kasemo, Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons Applied Physics Letters. ,vol. 92, pp. 013113- ,(2008) , 10.1063/1.2830817