作者: Vasiliy Dolgushev , Pavel Etingof
关键词: Quantum cohomology 、 Orbifold 、 Cohomology 、 Mathematics 、 Graded vector space 、 Algebra 、 Symplectic geometry 、 Quantum algebra 、 Group cohomology 、 Equivariant cohomology 、 Pure mathematics
摘要: We prove the additive version of conjecture proposed by Ginzburg and Kaledin. This states that if X/G is an orbifold modeled on a quotient smooth affine symplectic variety X (over C) finite group G\subset Aut(X) A G-stable quantum algebra functions then graded vector space HH(A^G) Hochschild cohomology A^G invariants isomorphic to H_{CR}(X/G)((h)) Chen-Ruan (stringy) X/G.