The Van den Bergh duality and the modular symmetry of a Poisson variety

作者: Vasiliy Dolgushev

DOI: 10.1007/S00029-008-0062-Z

关键词:

摘要: We consider a smooth Poisson affine variety with the trivial canon-ical bundle over \({\mathbb{C}}\). For such deformation quantization algebra \(A_\hbar\) obeys conditions of Van den Bergh duality theorem and corresponding dualizing module is determined by an outer automorphism intrinsic to \(A_\hbar\). show how this can be expressed in terms modular class variety. also prove that free if only structure unimodular.

参考文章(34)
Victor Ginzburg, Calabi-Yau algebras arXiv: Algebraic Geometry. ,(2006)
M. Kontsevich, Y. Soibelman, Notes on A∞-Algebras, A∞-Categories and Non-Commutative Geometry Lecture Notes in Physics. ,vol. 757, pp. 153- 220 ,(2008) , 10.1007/978-3-540-68030-7_6
Jean-Luc Brylinski, A differential complex for Poisson manifolds Journal of Differential Geometry. ,vol. 28, pp. 93- 114 ,(1988) , 10.4310/JDG/1214442161
Anton Alekseev, Anton Malkin, Eckhard Meinrenken, Lie group valued moment maps Journal of Differential Geometry. ,vol. 48, pp. 445- 495 ,(1998) , 10.4310/JDG/1214460860
Yvette Kosmann-Schwarzbach, Franco Magri, On the modular classes of Poisson-Nijenhuis manifolds arXiv: Symplectic Geometry. ,(2006)
Pantelis A. Damianou, Rui Loja Fernandes, INTEGRABLE HIERARCHIES AND THE MODULAR CLASS Annales de l'Institut Fourier. ,vol. 58, pp. 107- 137 ,(2008) , 10.5802/AIF.2346
Vasiliy Dolgushev, Pavel Etingof, Hochschild cohomology of quantized symplectic orbifolds and the Chen-Ruan cohomology International Mathematics Research Notices. ,vol. 2005, pp. 1657- 1688 ,(2005) , 10.1155/IMRN.2005.1657
Murray Gerstenhaber, The Cohomology Structure of an Associative Ring The Annals of Mathematics. ,vol. 78, pp. 267- ,(1963) , 10.2307/1970343
Michel Dubois-Violette, Graded algebras and multilinear forms Comptes Rendus Mathematique. ,vol. 341, pp. 719- 724 ,(2005) , 10.1016/J.CRMA.2005.10.017