Differential quantitative analysis of background structure in energy-filtered convergent-beam electron diffraction patterns

作者: Philip N. H. Nakashima , Barrington C. Muddle

DOI: 10.1107/S0021889810000749

关键词: Elastic scatteringElectronOpticsComputational physicsDensity functional theoryChemistryElectronic structureAngular frequencyResolution (electron density)DiffractionScattering

摘要: Measurements of electronic structure in solids by quantitative convergent-beamelectrondiffraction(QCBED)willnotreachtheirultimateaccuracyorprecisionuntil the contribution background to reflections energy-filteredCBED patterns is fully accounted for. Apart from well known diffusebackground that arises thermal diffuse scattering electrons, there acomponent has a much higher angular frequency. The present work reportsexperimental evidence this component mimics distribution oftheelastically scatteredelectrons within each reflection. A differentialapproachto QCBED suggested as means quantitatively accounting for thebackground energy-filtered CBED data.1. IntroductionThe high accuracy and precision structuremeasurements inorganic with degree crystalperfection convergent-beam electron diffrac-tion (QCBED) now established (Zuo et al.,1988;BirdSZuo,1993;Deiningeretal.,1994;Holmestadetal.,1995;PengZSaundersetal.,1995,1996,1999;Zuo al.,1997,1999;TsudaTStreltsovet al.,2001, 2003; Tsuda al.,2002;Jianget al.,2003;Ogataet al.,2004; Friis, Madsen al.,2003;Friis,Jianget al.,2003;Jiangetal.,2004;Friiset al.,2004,2005;Nakashima,2005,2007).Suchmeasurements are precise enough allow meaningfulcomparisons experimentally measured structurewith different ab initio theoretical models al.,1997,1999; Saunders al.,1999;Friis,Madsenet al.,2003;Jiangetal.,2003,2004;Friiset al.,2004,2005;Nakashima,2005),including those derived density functional theory andperiodic Hartree–Fock, Dirac–Fock linear combination ofatomic orbitals calculations.QCBED originated 1940 (MacGillavry, 1940) withsporadic application until late 1980s (Goodman L Voss al.,1980)whenthedevelopmentofenergy-filtering optics transmission microscopesresulted strong revival technique al.,1988,1997, 1999; Bird & Saunders, 1992; Zuo, 1993; Holmestad etal.,1995;PengZSaunderset al.,1995,1996,1999;Tsuda Tanaka, Streltsov al.,2001,2003;Tsudaet al.,2002; Jiang al.,2004;Friis,Madsenet al.,2003; al.,2003;Jianget al.,2004;Friiset al.,2004,2005; Nakashima, 2005). ability exclude almost all ofthe inelastic signal energy filtering, coupled highdynamic range digital detection (via CCDs) thecontinuous expansion computing power, allowed unprece-dented analysis experimental data via patternmatching based on elastic theory. As result, therefinement Fourier coefficients crystal potential(structure amplitudes or factors) during pattern-matching process became sufficiently accurate tobecomparabletothemostpreciseandaccuratemeasurementsever made X-ray diffraction (Dawson, 1967; Kato, 1969;Hart Milne, 1970).Even so, not reached its full potential becauseenergy filtering does remove components CBEDpattern unaccounted theory.Thermaldiffuse (TDS) ofelectrons results energylossesoflessthan0.1 eV,wellbelowthe resolution ofthemostmodern filters also below spread energiesfrom latest monochromated sources. Argumentsagainst applying calculations incorporating treatment ofTDS because their nearly prohibitive cost computingpower time (compared purely scatteringcalculations) will eventually fade advent newsupercomputing technologies such graphics processingunits. growing number incorporateTDS (Rossouw al.,1990;Loaneet al.,1991;Wang,1992;Muller al.,2001;Omotoet al.,2002;Dwyer,2003,2005;Dwyer Etheridge, 2003), Omoto al. (2002) illus-tratinghowTDScalculationscanbeincluded(non-iteratively)in QCBED. However, very little information theliterature about associatedwith disc pattern. Most deal onlywiththetotalsignalinthepattern,withoutseparatingtheTDSand components. examined due TDS theoretically inthe absence pattern, but without comment

参考文章(37)
J. M. Zuo, M. Kim, M. O'Keeffe, J. C. H. Spence, Direct observation of d-orbital holes and Cu-Cu bonding in Cu2O Nature. ,vol. 401, pp. 49- 52 ,(1999) , 10.1038/43403
M. Saunders, D.M. Bird, O.F. Holbrook, P.A. Midgley, R. Vincent, The use of Bethe potentials in zone-axis CBED pattern matching Ultramicroscopy. ,vol. 65, pp. 45- 52 ,(1996) , 10.1016/S0304-3991(96)00051-4
R. Holmestad, J. M. Zuo, J. C. H. Spence, R. Hoiert, Z. Horita, Effect of Mn doping on charge density in γ-TiAl by quantitative convergent beam electron diffraction Philosophical Magazine. ,vol. 72, pp. 579- 601 ,(1995) , 10.1080/01418619508243787
B. Jiang, J. M. Zuo, N. Jiang, M. O'Keeffe, J. C. H. Spence, Charge density and chemical bonding in rutile, TiO2 Acta Crystallographica Section A Foundations of Crystallography. ,vol. 59, pp. 341- 350 ,(2003) , 10.1107/S010876730301122X
Yoichiro Ogata, Kenji Tsuda, Yukikuni Akishige, Michiyoshi Tanaka, Refinement of the crystal structural parameters of the intermediate phase of h-BaTiO3 using convergent-beam electron diffraction. Acta Crystallographica Section A. ,vol. 60, pp. 525- 531 ,(2004) , 10.1107/S0108767304016307
J. Friis, B. Jiang, K. Marthinsen, R. Holmestad, A study of charge density in copper Acta Crystallographica Section A. ,vol. 61, pp. 223- 230 ,(2005) , 10.1107/S0108767305001315
C.J. Rossouw, P.R. Miller, J. Drennan, L.J. Allen, Quantitative absorption corrections for electron diffraction: Correlation between theory and experiment Ultramicroscopy. ,vol. 34, pp. 149- 163 ,(1990) , 10.1016/0304-3991(90)90069-X
D.M. Bird, M. Saunders, Sensitivity and accuracy of CBED pattern matching Ultramicroscopy. ,vol. 45, pp. 241- 251 ,(1992) , 10.1016/0304-3991(92)90512-I
Jesper Friis, Bin Jiang, John C.H. Spence, Randi Holmestad, Quantitative convergent beam electron diffraction measurements of low-order structure factors in copper. Microscopy and Microanalysis. ,vol. 9, pp. 379- 389 ,(2003) , 10.1017/S1431927603030319