Structural and Mechanistic Basis for Enhanced Translational Efficiency by 2-Thiouridine at the tRNA Anticodon Wobble Position

作者: Annia Rodriguez-Hernandez , Jessica L. Spears , Kirk W. Gaston , Patrick A. Limbach , Howard Gamper

DOI: 10.1016/J.JMB.2013.05.018

关键词: BiochemistryWobble base pairTransfer RNAAminoacylationTranslation (biology)BiologyRibosomeTRNA bindingProtein biosynthesisProtein structure

摘要: The 2-thiouridine (s(2)U) at the wobble position of certain bacterial and eukaryotic tRNAs enhances aminoacylation kinetics, assists proper codon-anticodon base pairing ribosome A-site, prevents frameshifting during translation. By mass spectrometry affinity-purified native Escherichia coli tRNA1(Gln)UUG, we show that complete modification 34 is 5-carboxyaminomethyl-2-thiouridine (cmnm(5)s(2)U). crystal structure E. glutaminyl-tRNA synthetase (GlnRS) bound to tRNA1(Gln) ATP demonstrates cmnm(5)s(2)U34 improves order a previously unobserved 11-amino-acid surface loop in distal β-barrel domain enzyme imparts other local rearrangements nearby amino acids create binding pocket for 2-thio moiety. Together with solved structures, these observations explain degenerate recognition C34 modified U34 by GlnRS. Comparative pre-steady-state kinetics tRNA1(Gln), synthetic containing s(2)U34 as sole modification, unmodified wild-type mutant tRNA2(Gln) transcripts exocyclic sulfur moiety tRNA affinity GlnRS 10-fold compared transcript an additional fourfold improvement arises from presence cmnm(5) Measurements Gln-tRNA(Gln) interactions A-site s(2)U glutamine codons CAA CAG increases rate GTP hydrolysis EF-Tu fivefold.

参考文章(62)
T G Hagervall, C G Edmonds, J A McCloskey, G R Björk, Transfer RNA(5-methylaminomethyl-2-thiouridine)-methyltransferase from Escherichia coli K-12 has two enzymatic activities. Journal of Biological Chemistry. ,vol. 262, pp. 8488- 8495 ,(1987) , 10.1016/S0021-9258(18)47440-6
Thressa C. Stadtman, Specific occurrence of selenium in enzymes and amino acid tRNAs. The FASEB Journal. ,vol. 1, pp. 375- 379 ,(1987) , 10.1096/FASEBJ.1.5.2445614
Eric Madore, Catherine Florentz, Richard Giegé, Shun-ichi Sekine, Shigeyuki Yokoyama, Jacques Lapointe, Effect of modified nucleotides on Escherichia coli tRNAGlu structure and on its aminoacylation by glutamyl-tRNA synthetase. Predominant and distinct roles of the mnm5 and s2 modifications of U34. FEBS Journal. ,vol. 266, pp. 1128- 1135 ,(1999) , 10.1046/J.1432-1327.1999.00965.X
Patricia Hoben, Nancy Royal, Alice Cheung, Fumiaki Yamao, K Biemann, Dieter Soell, Escherichia coli glutaminyl-tRNA synthetase. II. Characterization of the glnS gene product. Journal of Biological Chemistry. ,vol. 257, pp. 11644- 11650 ,(1982) , 10.1016/S0021-9258(18)33811-0
M Yaniv, WR Folk, The nucleotide sequences of the two glutamine transfer ribonucleic acids from Escherichia coli. Journal of Biological Chemistry. ,vol. 250, pp. 3243- 3253 ,(1975) , 10.1016/S0021-9258(19)41506-8
Steven C. Pomerantz, James A. McCloskey, [44] Analysis of RNA hydrolyzates by liquid chromatography-mass spectrometry Mass Spectrometry. ,vol. 193, pp. 796- 824 ,(1990) , 10.1016/0076-6879(90)93452-Q
Kady L. Krivos, Balasubrahmanyam Addepalli, Patrick A. Limbach, Removal of 3'-phosphate group by bacterial alkaline phosphatase improves oligonucleotide sequence coverage of RNase digestion products analyzed by collision-induced dissociation mass spectrometry. Rapid Communications in Mass Spectrometry. ,vol. 25, pp. 3609- 3616 ,(2011) , 10.1002/RCM.5266
Kelley C. Rogers, Dieter Soll, Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identity Biochemistry. ,vol. 32, pp. 14210- 14219 ,(1993) , 10.1021/BI00214A021
Takashi Yokogawa, Yusuke Kitamura, Daigo Nakamura, Satoshi Ohno, Kazuya Nishikawa, Optimization of the hybridization-based method for purification of thermostable tRNAs in the presence of tetraalkylammonium salts Nucleic Acids Research. ,vol. 38, ,(2010) , 10.1093/NAR/GKP1182