A characterization of the Anderson metal-insulator transport transition

作者: François Germinet , Abel Klein

DOI: 10.1215/S0012-7094-04-12423-6

关键词: MathematicsSpace dimensionExponentSchrödinger's catRandom mediaOperator (computer programming)QuantumNorm (mathematics)Metal insulatorQuantum mechanics

摘要: We investigate the Anderson metal-insulator transition for random Schrodinger operators. define strong insulator region to be part of spectrum where operator exhibits dynamical localization in Hilbert-Schmidt norm. introduce a local transport exponent β(E) and set weak metallic with nontrivial (i.e., β(E)>0). prove that these regions are complementary sets provides characterization transition. Moreover, we show if there is such transition, then has discontinuous at mobility edge. More precisely, nontrivial, β(E)≥1/(2d), d space dimension. These results follow from proof slow quantum waves media implies starting hypothesis authors' bootstrap multiscale analysis. also conclude coincides can perform analysis, proving analysis valid all way up

参考文章(82)
François Germinet, Stephan De Bièvre, Dynamical Localization for the Random Dimer Schrödinger Operator Journal of Statistical Physics. ,vol. 98, pp. 1135- 1148 ,(2000) , 10.1023/A:1018615728507
Abel Klein, Localization in the Anderson Model with Long Range Hopping Brazilian Journal of Physics. ,vol. 23, pp. 363- 371 ,(1993)
Abel Klein, Andrew Koines, A General Framework for Localization of Classical Waves: I. Inhomogeneous Media and Defect Eigenmodes Mathematical Physics Analysis and Geometry. ,vol. 4, pp. 97- 130 ,(2001) , 10.1023/A:1011931830095
Joachim Weidmann, Linear Operators in Hilbert Spaces ,(1980)
Jean-Michel Combes, Connections Between Quantum Dynamics and Spectral Properties of Time-Evolution Operators Mathematics in Science and Engineering. ,vol. 192, pp. 59- 68 ,(1993) , 10.1016/S0076-5392(08)62372-3
P. D. Hislop, A. Tip, J. M. Combes, Band edge localization and the density of states for acoustic and electromagnetic waves in random media Annales De L Institut Henri Poincare-physique Theorique. ,vol. 70, pp. 381- 428 ,(1999)
Jean-Marc Bouclet, François Germinet, Abel Klein, Sub-exponential decay of operator kernels for functions of generalized Schrodinger operators Proceedings of the American Mathematical Society. ,vol. 132, pp. 2703- 2712 ,(2004) , 10.1090/S0002-9939-04-07431-3