System-Scale Network Modeling of Cancer Using EPoC

作者: Tobias Abenius , Rebecka Jörnsten , Teresia Kling , Linnéa Schmidt , José Sánchez

DOI: 10.1007/978-1-4419-7210-1_37

关键词: CancerBioinformaticsCopy number aberrationComputational biologyRegressionBootstrappingLasso (statistics)Bayesian information criterionMedicineNetwork modelCancer systems biology

摘要: One of the central problems cancer systems biology is to understand complex molecular changes cancerous cells and tissues, use this understanding support development new targeted therapies. EPoC (Endogenous Perturbation analysis Cancer) a network modeling technique for tumor profiles. models are constructed from combined copy number aberration (CNA) mRNA data aim (1) identify genes whose aberrations significantly affect target expression (2) generate markers long- short-term survival patients. Models by combination regression bootstrapping methods. Prognostic scores obtained singular value decomposition networks. We have previously analyzed performance using glioblastoma The Cancer Genome Atlas (TCGA) consortium, shown that resulting contain both known candidate disease-relevant as hubs, well uncover predictors patient survival. Here, we give practical guide how perform in practice R, present set alternative frameworks.

参考文章(41)
R. A. Fisher, The Arrangement of Field Experiments Springer Series in Statistics. pp. 82- 91 ,(1992) , 10.1007/978-1-4612-4380-9_8
Yoo-Ah Kim, Stefan Wuchty, Teresa M. Przytycka, Simultaneous identification of causal genes and dys-regulated pathways in complex diseases research in computational molecular biology. ,vol. 6044, pp. 263- 280 ,(2010) , 10.1007/978-3-642-12683-3_17
Uri David Akavia, Oren Litvin, Jessica Kim, Felix Sanchez-Garcia, Dylan Kotliar, Helen C. Causton, Panisa Pochanard, Eyal Mozes, Levi A. Garraway, Dana Pe'er, An Integrated Approach to Uncover Drivers of Cancer Cell. ,vol. 143, pp. 1005- 1017 ,(2010) , 10.1016/J.CELL.2010.11.013
J. Tegner, M. K. S. Yeung, J. Hasty, J. J. Collins, Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling Proceedings of the National Academy of Sciences of the United States of America. ,vol. 100, pp. 5944- 5949 ,(2003) , 10.1073/PNAS.0933416100
Hui Zou, Trevor Hastie, Robert Tibshirani, Sparse Principal Component Analysis Journal of Computational and Graphical Statistics. ,vol. 15, pp. 265- 286 ,(2006) , 10.1198/106186006X113430
Su-In Lee, Aimée M. Dudley, David Drubin, Pamela A. Silver, Nevan J. Krogan, Dana Pe'er, Daphne Koller, Learning a Prior on Regulatory Potential from eQTL Data PLoS Genetics. ,vol. 5, pp. e1000358- ,(2009) , 10.1371/JOURNAL.PGEN.1000358
B. E. Stranger, M. S. Forrest, M. Dunning, C. E. Ingle, C. Beazley, N. Thorne, R. Redon, C. P. Bird, A. de Grassi, C. Lee, C. Tyler-Smith, N. Carter, S. W. Scherer, S. Tavare, P. Deloukas, M. E. Hurles, E. T. Dermitzakis, Relative Impact of Nucleotide and Copy Number Variation on Gene Expression Phenotypes Science. ,vol. 315, pp. 848- 853 ,(2007) , 10.1126/SCIENCE.1136678
Levi A. Garraway, Hans R. Widlund, Mark A. Rubin, Gad Getz, Aaron J. Berger, Sridhar Ramaswamy, Rameen Beroukhim, Danny A. Milner, Scott R. Granter, Jinyan Du, Charles Lee, Stephan N. Wagner, Cheng Li, Todd R. Golub, David L. Rimm, Matthew L. Meyerson, David E. Fisher, William R. Sellers, Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma Nature. ,vol. 436, pp. 117- 122 ,(2005) , 10.1038/NATURE03664