Multilevel modeling and model averaging.

作者: Sander Greenland

DOI:

关键词: Simple (abstract algebra)Prior informationData miningModel selectionComputer scienceMultilevel modelRegression analysis

摘要: Multilevel modeling, also known as hierarchical regression, generalizes ordinary regression modeling to allow explicit and flexible compromises between simple complex models. This article provides an elementary introduction multilevel a model-averaging technique. Model averaging alternative model selection, it emphasizes the role of prior information in finding good

参考文章(27)
J. B. Copas, Regression, Prediction and Shrinkage Journal of the royal statistical society series b-methodological. ,vol. 45, pp. 311- 335 ,(1983) , 10.1111/J.2517-6161.1983.TB01258.X
G.E.P. Box, An Apology for Ecumenism in Statistics. Scientific Inference, Data Analysis, and Robustness#R##N#Proceedings of a Conference Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, November 4–6, 1981. pp. 51- 84 ,(1983) , 10.1016/B978-0-12-121160-8.50009-0
Catherine Hill, Introduction aux modèles de régression Bulletin Du Cancer. ,vol. 87, pp. 543- 545 ,(2000)
Bruce G. Lindsay, Using Empirical Partially Bayes Inference for Increased Efficiency Annals of Statistics. ,vol. 13, pp. 914- 931 ,(1985) , 10.1214/AOS/1176349646
George Casella, An Introduction to Empirical Bayes Data Analysis The American Statistician. ,vol. 39, pp. 83- 87 ,(1985) , 10.1080/00031305.1985.10479400
Bradley Efron, Biased Versus Unbiased Estimation Advances in Mathematics. ,vol. 16, pp. 259- 277 ,(1975) , 10.1016/0001-8708(75)90114-0
J. R. HILL, A general framework for model-based statistics Biometrika. ,vol. 77, pp. 115- 126 ,(1990) , 10.1093/BIOMET/77.1.115
George Y. Wong, William M. Mason, The Hierarchical Logistic Regression Model for Multilevel Analysis Journal of the American Statistical Association. ,vol. 80, pp. 513- 524 ,(1985) , 10.1080/01621459.1985.10478148