Dual equivalence graphs and a combinatorial proof of LLT and Macdonald positivity

作者: Sami H. Assaf

DOI:

关键词: Macdonald polynomialsn! conjectureGraphKoornwinder polynomialsEquivalence (formal languages)Combinatorial proofCombinatoricsMathematicsDiscrete mathematicsSchur polynomialJack function

摘要: We make a systematic study of new combinatorial construction called dual equivalence graph. axiomatize these graphs and prove that their generating functions are symmetric Schur positive. By constructing graph on ribbon tableaux which we transform into graph, give proof the symmetry positivity introduced by Lascoux, Leclerc Thibon. Using Haglund's formula for transformed Macdonald polynomials, this also gives expansion polynomials.

参考文章(18)
I.G. Macdonald, A new class of symmetric functions. Séminaire Lotharingien de Combinatoire [electronic only]. ,vol. 20, ,(1988)
J. Haglund, A combinatorial model for the Macdonald polynomials. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 101, pp. 16127- 16131 ,(2004) , 10.1073/PNAS.0405567101
Christophe Carré, Bernard Leclerc, Splitting the Square of a Schur Function into its Symmetric and Antisymmetric Parts Journal of Algebraic Combinatorics. ,vol. 4, pp. 201- 231 ,(1995) , 10.1023/A:1022475927626
Mark Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture Journal of the American Mathematical Society. ,vol. 14, pp. 941- 1006 ,(2001) , 10.1090/S0894-0347-01-00373-3
Mark D. Haiman, Dual equivalence with applications, including a conjecture of Proctor Discrete Mathematics. ,vol. 99, pp. 79- 113 ,(1992) , 10.1016/0012-365X(92)90368-P
Dennis W Stanton, Dennis E White, A schensted algorithm for rim hook tableaux Journal of Combinatorial Theory, Series A. ,vol. 40, pp. 211- 247 ,(1985) , 10.1016/0097-3165(85)90088-3
Dominique Foata, ON THE NETTO INVERSION NUMBER OF A SEQUENCE Proceedings of the American Mathematical Society. ,vol. 19, pp. 236- 240 ,(1968) , 10.1090/S0002-9939-1968-0223256-9
M. Kashiwara, T. Miwa, E. Stern, Decomposition of $q$-deformed Fock spaces Selecta Mathematica-new Series. ,vol. 1, pp. 787- 805 ,(1995) , 10.1007/BF01587910
Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon, Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties Journal of Mathematical Physics. ,vol. 38, pp. 1041- 1068 ,(1997) , 10.1063/1.531807