Stanley Symmetric Functions and Peterson Algebras

作者: Thomas Lam , Luc Lapointe , Jennifer Morse , Anne Schilling , Mark Shimozono

DOI: 10.1007/978-1-4939-0682-6_3

关键词:

摘要: This purpose of this chapter is to introduce Stanley symmetric functions and affine from the combinatorial algebraic point view. The presentation roughly follows three lectures I gave at a conference titled “Affine Schubert Calculus” held in July 2010 Fields Institute Toronto.

参考文章(53)
Sara C. Billey, William Jockusch, Richard P. Stanley, Some Combinatorial Properties of Schubert Polynomials Journal of Algebraic Combinatorics. ,vol. 2, pp. 345- 374 ,(1993) , 10.1023/A:1022419800503
Victor Ginzburg, Perverse sheaves on a Loop group and Langlands' duality arXiv: Algebraic Geometry. ,(1995)
Sara Billey, Tao Kai Lam, Vexillary Elements in the Hyperoctahedral Group Journal of Algebraic Combinatorics. ,vol. 8, pp. 139- 152 ,(1998) , 10.1023/A:1008633710118
Thomas Lam, Mark Shimozono, A Little bijection for affine Stanley symmetric functions arXiv: Combinatorics. ,(2006)
Victor G. Kac, Infinite-Dimensional Lie Algebras idla. pp. 422- ,(1990) , 10.1017/CBO9780511626234
Jennifer Morse, Thomas Lam, Mark Shimozono, Luc Lapointe, k-SHAPE POSET AND BRANCHING OF k-SCHUR FUNCTIONS arXiv: Combinatorics. ,(2010)
Joelle Brichard, The Center of the Nilcoxeter and 0-Hecke Algebras arXiv: Rings and Algebras. ,(2008)
Jason Bandlow, Anne Schilling, Mike Zabrocki, The Murnaghan-Nakayama rule for k-Schur functions Journal of Combinatorial Theory, Series A. ,vol. 118, pp. 1588- 1607 ,(2011) , 10.1016/J.JCTA.2011.01.009