The down operator and expansions of near rectangular k-Schur functions

作者: Franco Saliola , Luis Serrano , Chris Berg

DOI:

关键词:

摘要: We prove that the Lam-Shimozono "down operator" on affine Weyl group induces a derivation of Fomin-Stanley subalgebra nilCoxeter algebra. use this to verify conjecture Berg, Bergeron, Pon and Zabrocki describing expansion k-Schur functions "near rectangles" in Consequently, we obtain combinatorial interpretation corresponding k-Littlewood--Richardson coefficients.

参考文章(14)
Sergey Fomin, Duality of Graded Graphs Journal of Algebraic Combinatorics. ,vol. 3, pp. 357- 404 ,(1994) , 10.1023/A:1022412010826
Sergey Fomin, Schensted Algorithms for Dual Graded Graphs Journal of Algebraic Combinatorics. ,vol. 4, pp. 5- 45 ,(1995) , 10.1023/A:1022404807578
Jason Bandlow, Anne Schilling, Mike Zabrocki, The Murnaghan-Nakayama rule for k-Schur functions Journal of Combinatorial Theory, Series A. ,vol. 118, pp. 1588- 1607 ,(2011) , 10.1016/J.JCTA.2011.01.009
Thomas Lam, Luc Lapointe, Jennifer Morse, Anne Schilling, Mark Shimozono, Mike Zabrocki, Stanley Symmetric Functions and Peterson Algebras Fields Institute Monographs. ,vol. 33, pp. 133- 168 ,(2014) , 10.1007/978-1-4939-0682-6_3
Thomas. Lam, AFFINE STANLEY SYMMETRIC FUNCTIONS American Journal of Mathematics. ,vol. 128, pp. 1553- 1586 ,(2006) , 10.1353/AJM.2006.0045
Mike Zabrocki, Nantel Bergeron, Hugh Thomas, Chris Berg, Expansion of $k$-Schur functions for maximal $k$-rectangles within the affine nilCoxeter algebra arXiv: Combinatorics. ,(2011) , 10.4310/JOC.2012.V3.N3.A9
Kailash C. Misra, Tetsuji Miwa, Crystal base for the basic representation of\(U_q (\widehat{\mathfrak{s}\mathfrak{l}}(n))\) Communications in Mathematical Physics. ,vol. 134, pp. 79- 88 ,(1990) , 10.1007/BF02102090
Luc Lapointe, Jennifer Morse, Tableaux on k + 1-crores, reduced words for affine permutations, and k -Schur expansions Journal of Combinatorial Theory, Series A. ,vol. 112, pp. 44- 81 ,(2005) , 10.1016/J.JCTA.2005.01.003
Thomas Lam, Mark Shimozono, Quantum cohomology of G/P and homology of affine Grassmannian Acta Mathematica. ,vol. 204, pp. 49- 90 ,(2010) , 10.1007/S11511-010-0045-8
J. Morse, A. Lascoux, L. Lapointe, Tableau atoms and a new Macdonald positivity conjecture Duke Mathematical Journal. ,vol. 116, pp. 103- 146 ,(2003) , 10.1215/S0012-7094-03-11614-2