Theoretical model of the single spin-echo relaxation time for spherical magnetic perturbers.

作者: Felix T. Kurz , Thomas Kampf , Sabine Heiland , Martin Bendszus , Heinz-Peter Schlemmer

DOI: 10.1002/MRM.25196

关键词: DephasingMagnetic susceptibilityMagnetic dipoleCondensed matter physicsRelaxation (NMR)Magnetic particle inspectionChemistrySpin echoSpin–lattice relaxationSpin–spin relaxation

摘要: Purpose Magnetically labeled cells and tissue iron deposits provide qualitative means to detect monitor cardiovascular cerebrovascular diseases with magnetic resonance imaging. However, quantitatively examine the extent of pathological micromorphological changes, detailed knowledge about microstructural parameters relaxation times is required. Methods The complex geometrical arrangement spherical perturbers considered in an external field. They create a dipole field, whose corresponding spin-echo formation investigated by analyzing diffusion process dephasing volume. Quantitative predictions present analysis are compared experimental data empirical models. Results Single can be characterized morphological such as particle concentration size well coefficient local susceptibility properties. As expected, no static plateau observed contrast gradient-echo time. Instead, rate drops for large sizes exhibits prominent maximal value at intermediate sizes. These findings agree previous theoretical results. Conclusion Obtained results single time allow accurately quantify processes neurodegenerative disease migration dynamics magnetically help Magn Reson Med 71:1888–1895, 2014. © 2014 Wiley Periodicals, Inc.

参考文章(40)
Martin Bendszus, Guido Stoll, Caught in the act: in vivo mapping of macrophage infiltration in nerve injury by magnetic resonance imaging. The Journal of Neuroscience. ,vol. 23, pp. 10892- 10896 ,(2003) , 10.1523/JNEUROSCI.23-34-10892.2003
Robert Weisskoff, Chun S. Zuo, Jerrold L. Boxerman, Bruce R. Rosen, Microscopic Susceptibility Variation and Transverse Relaxation: Theory and Experiment Magnetic Resonance in Medicine. ,vol. 31, pp. 601- 610 ,(1994) , 10.1002/MRM.1910310605
H. C. Torrey, Bloch Equations with Diffusion Terms Physical Review. ,vol. 104, pp. 563- 565 ,(1956) , 10.1103/PHYSREV.104.563
J.H. Jensen, R. Chandra, NMR relaxation in tissues with weak magnetic inhomogeneities Magnetic Resonance in Medicine. ,vol. 44, pp. 144- 156 ,(2000) , 10.1002/1522-2594(200007)44:1<144::AID-MRM21>3.0.CO;2-O
W. R. Bauer, K. Schculten, Theory of contrast agents in magnetic resonance imaging: coupling of spin relaxation and transport. Magnetic Resonance in Medicine. ,vol. 26, pp. 16- 39 ,(1992) , 10.1002/MRM.1910260104
Pierre Gillis, Francis Moiny, Rodney A. Brooks, On T(2)-shortening by strongly magnetized spheres: a partial refocusing model. Magnetic Resonance in Medicine. ,vol. 47, pp. 257- 263 ,(2002) , 10.1002/MRM.10059
W. R. Bauer, C. H. Ziener, P. M. Jakob, Non-Gaussian spin dephasing Physical Review A. ,vol. 71, pp. 053412- ,(2005) , 10.1103/PHYSREVA.71.053412
C. H. Ziener, T. Kampf, G. Melkus, V. Herold, T. Weber, G. Reents, P. M. Jakob, W. R. Bauer, Local frequency density of states around field inhomogeneities in magnetic resonance imaging: effects of diffusion. Physical Review E. ,vol. 76, pp. 031915- ,(2007) , 10.1103/PHYSREVE.76.031915
S. D. Stoller, W. Happer, F. J. Dyson, Transverse spin relaxation in inhomogeneous magnetic fields Physical Review A. ,vol. 44, pp. 7459- 7477 ,(1991) , 10.1103/PHYSREVA.44.7459
CH Ziener, WR Bauer, PM Jakob, None, Transverse relaxation of cells labeled with magnetic nanoparticles Magnetic Resonance in Medicine. ,vol. 54, pp. 702- 706 ,(2005) , 10.1002/MRM.20634