Phase-space structure and regularization of Manev-type problems

作者: Florin Diacu , Vasile Mioc , Cristina Stoica

DOI: 10.1016/S0362-546X(98)00326-5

关键词: Space ScienceObservatoryMathematicsRegularization (linguistics)Type (model theory)Mathematical analysisHumanitiesPhase spaceRomanianStructure (category theory)

摘要: Phase-space structure and regularization of Manev-type problems Florin Diacu a;∗, Vasile Mioc b, Cristina Stoica c a Department Mathematics Statistics, University Victoria, Canada V8W 3P4 b Astronomical Institute the Romanian Academy, Observatory Cluj-Napoca, Str. Cire silor 19, 3400 Romania for Gravitation Space Sciences, Laboratory Gravitation, Mendeleev 21-25, Bucharest,

参考文章(25)
Ernesto A. Lacomba, Jaume Llibre, Ana Nunes, Invariant Tori and Cylinders for a Class of Perturbed Hamiltonian Systems Mathematical Sciences Research Institute Publications. pp. 373- 385 ,(1991) , 10.1007/978-1-4613-9725-0_13
Florin N. Diacu, Vasile Mioc, Cristina Stoica, The Manev two-body problem: quantitative and qualitative theory ,(1994)
Hans J. Sperling, On the real singularities of the N-body problem Crelle's Journal. ,vol. 245, pp. 15- 40 ,(1969)
V. A. Brumberg, Present Problems in Relativistic Celestial Mechanics Relativity in Celestial Mechanics and Astrometry. High Precision Dynamical Theories and Observational Verifications. ,vol. 114, pp. 5- 17 ,(1986) , 10.1017/S007418090014793X
Florin N. Diacu, Near-Collision Dynamics for Particle Systems with Quasihomogeneous Potentials Journal of Differential Equations. ,vol. 128, pp. 58- 77 ,(1996) , 10.1006/JDEQ.1996.0089
Donald G Saari, The manifold structure for collision and for hyperbolic-parabolic orbits in the n-body problem☆ Journal of Differential Equations. ,vol. 55, pp. 300- 329 ,(1984) , 10.1016/0022-0396(84)90072-X
Albert Einstein, Leopold Infeld, Banesh Hoffmann, None, The Gravitational Equations and the Problem of Motion The Annals of Mathematics. ,vol. 39, pp. 65- 100 ,(1938) , 10.2307/1968714
C. Conley, R. Easton, Isolated invariant sets and isolating blocks Transactions of the American Mathematical Society. ,vol. 158, pp. 35- 61 ,(1971) , 10.1090/S0002-9947-1971-0279830-1