Collision and escape orbits in a generalized Hénon–Heiles model

作者: Vasile Mioc , Daniel Paşca , Cristina Stoica

DOI: 10.1016/J.NONRWA.2009.01.035

关键词:

摘要: Abstract The motion of a material point unit mass in field determined by generalized Henon–Heiles potential U = A q 1 2 + B C D 3 , with ( ) standard Cartesian coordinates and ∈ 0 ∞ × R is addressed for two limit situations: collision escape. Using McGehee-type transformations, the corresponding infinity boundary manifolds pasted on phase space are determined. These fictitious manifolds, but, due to continuity respect initial data, their flow determines near orbit behaviour. dynamics fully described. topology manifold independent parameters. In full space, while spiraling orbits present, most avoid collision. changes as ratio between varies. More precisely, there symmetric pitchfork bifurcations along line − reshaping bifurcation line. Besides rectilinear orbits, near-escape includes oscillatory which angular momentum alternates sign.

参考文章(25)
Florin N. Diacu, Vasile Mioc, Cristina Stoica, The Manev two-body problem: quantitative and qualitative theory ,(1994)
Cristina Stoica, Vasile Mioc, The Schwarzschild Problem in Astrophysics Astrophysics and Space Science. ,vol. 249, pp. 161- 173 ,(1997) , 10.1023/A:1000347014891
Dino Boccaletti, Giuseppe Pucacco, Theory of Orbits thor. pp. 81- ,(1996) , 10.1007/978-3-662-03319-7
Michel Henon, Carl Heiles, The applicability of the third integral of motion: Some numerical experiments The Astronomical Journal. ,vol. 69, pp. 73- 79 ,(1964) , 10.1086/109234
Scott Craig, Florin Diacu, Ernesto A. Lacomba, Ernesto Perez, On the anisotropic Manev problem Journal of Mathematical Physics. ,vol. 40, pp. 1359- 1375 ,(1999) , 10.1063/1.532807
Robert L. Devaney, Collision Orbits in the Anisotropic Kepler Problem Inventiones Mathematicae. ,vol. 45, pp. 221- 251 ,(1978) , 10.1007/BF01403170
Ernesto A. Lacomba, Luis A. Ibort, Origin and Infinity Manifolds for Mechanical Systems with Homogeneous Potentials Acta Applicandae Mathematicae. ,vol. 11, pp. 259- 284 ,(1988) , 10.1007/BF00140121
Richard McGehee, Triple collision in the collinear three-body problem Inventiones Mathematicae. ,vol. 27, pp. 191- 227 ,(1974) , 10.1007/BF01390175
Florin Diacu, Vasile Mioc, Cristina Stoica, Phase-space structure and regularization of Manev-type problems Nonlinear Analysis-theory Methods & Applications. ,vol. 41, pp. 1029- 1055 ,(2000) , 10.1016/S0362-546X(98)00326-5