On the anisotropic Manev problem

作者: Scott Craig , Florin Diacu , Ernesto A. Lacomba , Ernesto Perez

DOI: 10.1063/1.532807

关键词: MathematicsPhase spaceFlow (mathematics)Mathematical analysisManifold (fluid mechanics)Homothetic transformationCollisionClassical mechanicsSingularitySpace (mathematics)Connection (vector bundle)

摘要: We consider the Manev potential, given by sum between inverse and square of distance, in an anisotropic space, i.e., such that force acts differently each direction. Using McGehee coordinates, we blow up collision singularity, paste a manifold to phase study flow on near manifold, find positive-measure set orbits. Besides frontal homothetic, nonhomothetic, spiraling collisions ejections, put into evidence surprising class oscillatory ejection infinity further tackle capture escape solutions zero-energy case. By finding connection orbits equilibria and/or cycles at impact infinity, describe large capture-collision ejection-escape solutions.

参考文章(14)
Florin N. Diacu, Vasile Mioc, Cristina Stoica, The Manev two-body problem: quantitative and qualitative theory ,(1994)
R P Agarwal, Dynamical systems and applications World Scientific. ,(1995) , 10.1142/2863
Florin N. Diacu, Near-Collision Dynamics for Particle Systems with Quasihomogeneous Potentials Journal of Differential Equations. ,vol. 128, pp. 58- 77 ,(1996) , 10.1006/JDEQ.1996.0089
Martin C. Gutzwiller, Periodic Orbits and Classical Quantization Conditions Journal of Mathematical Physics. ,vol. 12, pp. 343- 358 ,(1971) , 10.1063/1.1665596
G. Maneff, Die Gravitation und das Prinzip von Wirkung und Gegenwirkung European Physical Journal. ,vol. 31, pp. 786- 802 ,(1925) , 10.1007/BF02980633
J Casasayas, E Fontich, A Nunes, Invariant manifolds for a class of parabolic points Nonlinearity. ,vol. 5, pp. 1193- 1210 ,(1992) , 10.1088/0951-7715/5/5/008
Robert L. Devaney, Collision Orbits in the Anisotropic Kepler Problem Inventiones Mathematicae. ,vol. 45, pp. 221- 251 ,(1978) , 10.1007/BF01403170
Josefina Casasayas, Jaume Llibre, Qualitative analysis of the anisotropic Kepler problem ,(1984)
Richard McGehee, Triple collision in the collinear three-body problem Inventiones Mathematicae. ,vol. 27, pp. 191- 227 ,(1974) , 10.1007/BF01390175