Solitons and Scattering for the Cubic–Quintic Nonlinear Schrödinger Equation on $${\mathbb{R}^3}$$ R 3

作者: Rowan Killip , Tadahiro Oh , Oana Pocovnicu , Monica Vişan

DOI: 10.1007/S00205-017-1109-0

关键词: Type (model theory)Operator (physics)Partial differential equationNonlinear Schrödinger equationMathematicsVirial theoremSolitonQuintic functionMathematical analysisContext (language use)

摘要: We consider the cubic–quintic nonlinear Schrodinger equation: $$i\partial_t u = -\Delta - |u|^2u + |u|^4u.$$ In first part of paper, we analyze one-parameter family ground state solitons associated to this equation with particular attention shape mass/energy curve. Additionally, are able characterize kernel linearized operator about such and demonstrate that they occur as optimizers for a inequalities Gagliardo–Nirenberg type. Building on work, in latter paper prove scattering holds solutions belonging region \({{\mathcal{R}}}\) plane where virial is positive. show partially bounded by also rescalings (which not soliton their own right). The discovery rescaled context new highlights an unexpected limitation any virial-based methodology.

参考文章(93)
Thierry Cazenave, Semilinear Schrodinger Equations ,(2003)
Yvan Martel, Stefan Le Coz, Pierre Raphael, Minimal mass blow up solutions for a double power nonlinear Schr\"odinger equation arXiv: Analysis of PDEs. ,(2014)
J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case Journal of the American Mathematical Society. ,vol. 12, pp. 145- 171 ,(1999) , 10.1090/S0894-0347-99-00283-0
P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 Annales De L Institut Henri Poincare-analyse Non Lineaire. ,vol. 1, pp. 109- 145 ,(1984) , 10.1016/S0294-1449(16)30428-0
M. Dubrovin, A. J. Sadoff, G. Masek, D. Cinabro, E. Dambasuren, J. Kandaswamy, P. I. Hopman, E. von Toerne, D. L. Kreinick, C. J. Stepaniak, G. Bonvicini, D. L. Hartill, A. I. Rubiera, G. Brandenburg, H. Stoeck, B. Valant-Spaight, B. I. Eisenstein, A. Eppich, G. E. Gladding, A. D. Foland, R. Godang, I. Narsky, C. Bebek, J. Urheim, T. Riehle, R. Janicek, K. M. Ecklund, P. Gaidarev, E. Nordberg, S. J. Richichi, S. B. Athar, A. Warburton, R. A. Briere, B. Gittelman, T. Hart, D. Peterson, D. E. Jaffe, J. P. Alexander, P. M. Patel, J. J. Thaler, M. A. Marsh, J. Wu, S. Ahmed, G. J. Zhou, S. J. Lee, D. G. Cassel, R. Kass, J. W. Hinson, K. Honscheid, D. Besson, J. R. Patterson, A. Bean, J. J. O'Neill, E. Johnson, S. Chen, E. H. Thorndike, I. Karliner, E. I. Shibata, V. Savinov, G. P. Chen, T. E. Coan, D. Riley, B. E. Berger, T. S. Hill, C. Gwon, T. Bergfeld, L. Hsu, X. Zhao, N. B. Mistry, J. C. Wang, S. Kopp, S. E. Csorna, R. M. Hans, R. J. Morrison, M. Artuso, R. Baker, P. S. Drell, C. Sedlack, M. S. Alam, T. O. Meyer, S. McGee, L. Jian, J. G. Thayer, A. Romano, L. Ling, H. Vogel, P. Skubic, V. Fadeyev, A. Shapiro, S. Timm, S. W. Gray, S. Schuh, R. Wilson, A. Smith, F. Wappler, D. M. Asner, C. Prescott, P. Avery, R. Mountain, D. H. Miller, J. Williams, K. Berkelman, M. Palmer, R. Stroynowski, A. J. Weinstein, H. P. Paar, K. W. Edwards, D. Y.J. Kim, M. Kostin, A. Magerkurth, T. Ferguson, B. K. Heltsley, I. Danko, J. Ye, R. Ammar, G. C. Moneti, A. Gritsan, J. Yelton, Y. Kubota, J. Ernst, Mats A Selen, C. Plager, G. Majumder, T. Wlodek, M. Saleem, V. Pavlunin, E. Eckhart, W. M. Sun, V. Boisvert, A. H. Mahmood, J. Lee, A. Ershov, G. Viehhauser, K. W. McLean, J. B. Thayer, George D Gollin, D. Cronin-Hennessy, V. V. Frolov, M. M. Zoeller, F. Blanc, Z. Xu, H. Severini, A. Anastassov, H. Kagan, K. Bukin, S. Anderson, S. P. Pappas, A. Undrus, R. Mahapatra, L. Gibbons, A. L. Lyon, J. E. Duboscq, T. K. Pedlar, A. Bornheim, S. Stone, D. Urner, M. Lohner, M. Schmidtler, C. Boulahouache, D. Hufnagel, Y. Maravin, C. D. Jones, R. Ehrlich, T. Skwarnicki, R. Poling, K. K. Gan, I. P.J. Shipsey, J. Fast, H. Schwarthoff, Y. S. Gao, A. Wolf, R. Ayad, E. Lipeles, Search for Charmless [Formula presented] Decays Physical Review Letters. ,vol. 88, pp. 4- ,(2002) , 10.1103/PHYSREVLETT.88.021802
R. Clausius, XVI. On a mechanical theorem applicable to heat Philosophical Magazine Series 1. ,vol. 40, pp. 122- 127 ,(1870) , 10.1080/14786447008640370
Rémi Carles, Sahbi Keraani, On the role of quadratic oscillations in nonlinear Schrödinger equations II. The $L^2$-critical case. Transactions of the American Mathematical Society. ,vol. 359, pp. 33- 62 ,(2006) , 10.1090/S0002-9947-06-03955-9