Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case

作者: J. Bourgain

DOI: 10.1090/S0894-0347-99-00283-0

关键词:

摘要: is globally wellposed in time. More precisely, we obtain a unique solution u = uφ ∈ CH1([0,∞[) such that for all time, u(t) depends continuously on the data φ (in fact, dependence even real analytic here). Moreover, there scattering t→∞. The same statement holds radial H, s ≥ 1 and proves particular global existence of classical solutions radially symmetric case. Also this issue was open. Thus analogue NLS result wave equation with quintic nonlinearity obtained by M. Struwe [Str] case (and Grillakis [Gr], [S-S], general). In equation, proof based following two different facts:

参考文章(9)
G. Velo, J. Ginibre, Scattering theory in the energy space for a class of nonlinear Schrödinger equations Journal de Mathématiques Pures et Appliquées. ,vol. 64, pp. 363- 401 ,(1985)
Jean Ginibre, Giorgio Velo, On a Class of non Linear Schrödinger Equations with non Local Interaction. Mathematische Zeitschrift. ,vol. 170, pp. 109- 136 ,(1980) , 10.1007/BF01214768
Thierry Cazenave, Fred B. Weissler, The Cauchy problem for the critical nonlinear Schro¨dinger equation in H s Nonlinear Analysis-theory Methods & Applications. ,vol. 14, pp. 807- 836 ,(1990) , 10.1016/0362-546X(90)90023-A
Jalal Shatah, Michael Struwe, Regularity results for nonlinear wave equations Annals of Mathematics. ,vol. 138, pp. 503- 518 ,(1993) , 10.2307/2946554
Manoussos G. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity Annals of Mathematics. ,vol. 132, pp. 485- 509 ,(1990) , 10.2307/1971427
Jeng-Eng Lin, Walter A. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation Journal of Functional Analysis. ,vol. 30, pp. 245- 263 ,(1978) , 10.1016/0022-1236(78)90073-3
Michael Struwe, Globally regular solutions to the $u^5$ Klein-Gordon equation Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 15, pp. 495- 513 ,(1988)
G Velo, J Ginibre, Scattering theory in the energy space for a class of nonlinear Schroedinger equations J. Math. Pures Appl.; (France). ,(1985)