The Concentration-Compactness Rigidity Method for Critical Dispersive and Wave Equations

作者: Carlos E. Kenig

DOI: 10.1007/978-3-0348-0191-1_4

关键词:

摘要: In these lectures I will describe a program (which call the concentrationcompactness/rigidity method) that Frank Merle and have been developing to study critical evolution problems. The issues studied center around global wellposedness scattering. method applies nonlinear dispersive wave equations in both defocusing focusing cases.

参考文章(65)
Jalal Shatah, Michael Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth International Mathematics Research Notices. ,vol. 1994, pp. 303- 309 ,(1994) , 10.1155/S1073792894000346
Haïm Brezis, Moshe Marcus, Hardy's inequalities revisited Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 25, pp. 217- 237 ,(1997)
Neil S. Trudinger, Remarks concerning the conformal deformation of riemannian structures on compact manifolds Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 22, pp. 265- 274 ,(1968)
Lars Hörmander, The analysis of linear partial differential operators Springer-Verlag. ,(1990)
J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case Journal of the American Mathematical Society. ,vol. 12, pp. 145- 171 ,(1999) , 10.1090/S0894-0347-99-00283-0
Michael Struwe, Jalal M. Ihsan Shatah, Geometric wave equations ,(1998)
Joachim Krieger, Wilhelm Schlag, Daniel Tataru, Slow blow-up solutions for the H1(R3) critical focusing semilinear wave equation Duke Mathematical Journal. ,vol. 147, pp. 1- 53 ,(2009) , 10.1215/00127094-2009-005
Monica Visan, Terence Tao, STABILITY OF ENERGY-CRITICAL NONLINEAR SCHR¨ ODINGER EQUATIONS IN HIGH DIMENSIONS arXiv: Analysis of PDEs. ,(2005)
Igor Rodnianski, Jacob Sterbenz, On the formation of singularities in the critical $O(3)$ $\sigma$-model Annals of Mathematics. ,vol. 172, pp. 187- 242 ,(2010) , 10.4007/ANNALS.2010.172.187
Monica Visan, Rowan Killip, Xiaoyi Zhang, The mass-critical nonlinear Schr\"odinger equation with radial data in dimensions three and higher arXiv: Analysis of PDEs. ,(2007)