Global well - posedness and scattering for the focusing, energy - critical nonlinear Schrödinger problem in dimension $d = 4$ for initial data below a ground state threshold

作者: Benjamin Dodson

DOI:

关键词:

摘要: In this paper we prove global well - posedness and scattering for the focusing, energy critical nonlinear Schrodinger initial value problem in four dimensions. Previous work proved five dimensions higher using double Duhamel trick. paper, long time Strichartz estimates are able to overcome logarithmic blowup

参考文章(26)
J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case Journal of the American Mathematical Society. ,vol. 12, pp. 145- 171 ,(1999) , 10.1090/S0894-0347-99-00283-0
Terence Tao, Nonlinear Dispersive Equations CBMS Regional Conference Series in Mathematics. ,vol. 106, ,(2006) , 10.1090/CBMS/106
Michael Eugene Taylor, Tools for PDE ,(2000)
J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global existence and scattering for rough solutions of a nonlinear Schr�dinger equation on ?3 Communications on Pure and Applied Mathematics. ,vol. 57, pp. 987- 1014 ,(2004) , 10.1002/CPA.20029
Monica Visan, Rowan Killip, Xiaoyi Zhang, The mass-critical nonlinear Schr\"odinger equation with radial data in dimensions three and higher arXiv: Analysis of PDEs. ,(2007)
R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations Journal of Mathematical Physics. ,vol. 18, pp. 1794- 1797 ,(1977) , 10.1063/1.523491
Monica Visan, Terence Tao, Xiaoyi Zhang, The nonlinear Schr\"odinger equation with combined power-type nonlinearities arXiv: Analysis of PDEs. ,(2005)