Regularity results for nonlinear wave equations

作者: Jalal Shatah , Michael Struwe

DOI: 10.2307/2946554

关键词:

摘要: … with a smooth function (; that is, a semilinear wave equation of type (0.1) in 1R4 x IR. Note that c = (2g"'(0))/3 may have the "wrong" sign. The norm of w can be estimated in terms of the …

参考文章(12)
Konrad J�rgens, Das Anfangswertproblem in Großen für eine Klasse nichtlinearer Wellengleichungen Mathematische Zeitschrift. ,vol. 77, pp. 295- 308 ,(1961) , 10.1007/BF01180181
C. E. Kenig, A. Ruiz, C. D. Sogge, Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators Duke Mathematical Journal. ,vol. 55, pp. 329- 347 ,(1987) , 10.1215/S0012-7094-87-05518-9
J. Shath, A. Tahvildar-Zadeh, Regularity of harmonic maps from the Minkowski space into rotationally symmetric manifolds Communications on Pure and Applied Mathematics. ,vol. 45, pp. 947- 971 ,(1992) , 10.1002/CPA.3160450803
Robert S. Strichartz, Convolutions with kernels having singularities on a sphere Transactions of the American Mathematical Society. ,vol. 148, pp. 461- 471 ,(1970) , 10.1090/S0002-9947-1970-0256219-1
Manoussos G. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity Annals of Mathematics. ,vol. 132, pp. 485- 509 ,(1990) , 10.2307/1971427
Manoussos G. Grillakis, Regularity for the wave equation with a critical nonlinearity Communications on Pure and Applied Mathematics. ,vol. 45, pp. 749- 774 ,(1992) , 10.1002/CPA.3160450604
Time decay for the nonlinear Klein-Gordon equation Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 306, pp. 291- 296 ,(1968) , 10.1098/RSPA.1968.0151
J. Ginibre, G. Velo, The Global Cauchy Problem for the Non Linear Klein-Gordon Equation. Mathematische Zeitschrift. ,vol. 189, pp. 487- 505 ,(1985) , 10.1007/BF01168155