Time decay of Lp norms for solutions of the wave equation on exterior domains

作者: Michael Beals

DOI: 10.1007/978-1-4612-2014-5_4

关键词:

摘要: We consider global estimates for the time dependence of spatial L p norms solutions to wave equation on exterior a smooth compact strictly convex obstacle in ℝn, n ≥ 2, with vanishing Dirichlet data boundary: $$ \square u = 0\,{\text{on}}\,\Omega \times \mathbb{R},\,u\left( 0 \right) f_0 ,u_t \left( f_1 ,u\left| {_{\partial \Omega \mathbb{R}} 0} \right. $$ (1.1) .

参考文章(16)
Michael Beals, Global time decay of the amplitude of a reflected wave Partial differential equations and mathematical physics. pp. 25- 44 ,(1996) , 10.1007/978-1-4612-0775-7_3
Walter Strauss, Nonlinear Wave Equations CBMS Regional Conference Series in Mathematics. ,vol. 73, ,(1990) , 10.1090/CBMS/073
R. Michael Beals, boundedness of Fourier integral operators Memoirs of the American Mathematical Society. ,vol. 38, pp. 0- 0 ,(1982) , 10.1090/MEMO/0264
Michael Beals, Optimal l∞ decay for solutions to the wave equation with a potential Communications in Partial Differential Equations. ,vol. 19, pp. 1319- 1369 ,(1994) , 10.1080/03605309408821056
Cathleen S. Morawetz, James V. Ralston, Walter A. Strauss, Decay of solutions of the wave equation outside nontrapping obstacles Communications on Pure and Applied Mathematics. ,vol. 30, pp. 447- 508 ,(1977) , 10.1002/CPA.3160300405
James Ralston, Note on the decay of acoustic waves Duke Mathematical Journal. ,vol. 46, pp. 799- 804 ,(1979) , 10.1215/S0012-7094-79-04641-6
Lars Hörmander, Fourier integral operators. I Acta Mathematica. ,vol. 127, pp. 79- 183 ,(1971) , 10.1007/BF02392052
H. Lindblad, C.D. Sogge, On Existence and Scattering with Minimal Regularity for Semilinear Wave Equations Journal of Functional Analysis. ,vol. 130, pp. 357- 426 ,(1995) , 10.1006/JFAN.1995.1075
Jalal Shatah, Michael Struwe, Regularity results for nonlinear wave equations Annals of Mathematics. ,vol. 138, pp. 503- 518 ,(1993) , 10.2307/2946554
R. B. Melrose, Singularities and energy decay in acoustical scattering Duke Mathematical Journal. ,vol. 46, pp. 43- 59 ,(1979) , 10.1215/S0012-7094-79-04604-0