Exploring adiabatic quantum trajectories via optimal control

作者: Matthew D Grace , Constantin Brif , Mohan Sarovar , Kevin C Young

DOI: 10.1088/1367-2630/16/6/065013

关键词: Adiabatic quantum computationTrajectoryQuantumClassical mechanicsAdiabatic processPopulationStatistical physicsOptimal controlHamiltonian (control theory)PhysicsGround state

摘要: Adiabatic quantum computation employs a slow change of time-dependent control function (or functions) to interpolate between an initial and final Hamiltonian, which helps keep the system in instantaneous ground state. When evolution time is finite, degree adiabaticity (quantified this work as average ground-state population during evolution) depends on particulars dynamic trajectory associated with given set functions. We use optimal theory composite objective functional numerically search for controls that achieve target state high fidelity while simultaneously maximizing adiabaticity. Exploring properties adiabatic trajectories model systems elucidates mechanisms suppress unwanted excitations from Specifically, we discover multiple functions makes it possible access rich trajectories, some attain significantly improved performance (in terms both adiabaticity) through increase energy gap most time.

参考文章(69)
R. MacKenzie, E. Marcotte, H. Paquette, Perturbative approach to the adiabatic approximation Physical Review A. ,vol. 73, pp. 042104- ,(2006) , 10.1103/PHYSREVA.73.042104
Andris Ambainis, Oded Regev, An Elementary Proof of the Quantum Adiabatic Theorem arXiv: Quantum Physics. ,(2004)
Michael Sipser, Jeffrey Goldstone, Sam Gutmann, Edward Farhi, Quantum Computation by Adiabatic Evolution arXiv: Quantum Physics. ,(2000)
Jeffrey Goldstone, Sam Gutmann, Edward Farhi, Quantum Adiabatic Evolution Algorithms with Different Paths arXiv: Quantum Physics. ,(2002)
Erik Torrontegui, Sara Ibáñez, Sofia Martínez-Garaot, Michele Modugno, Adolfo del Campo, David Guéry-Odelin, Andreas Ruschhaupt, Xi Chen, Juan Gonzalo Muga, Shortcuts to Adiabaticity Advances in Atomic Molecular and Optical Physics. ,vol. 62, pp. 117- 169 ,(2013) , 10.1016/B978-0-12-408090-4.00002-5
Gabriel G. Balint-Kurti, Shiyang Zou, Alex Brown, Optimal Control Theory for Manipulating Molecular Processes John Wiley & Sons, Inc.. pp. 43- 94 ,(2008) , 10.1002/9780470259474.CH2
T. Calarco, A. Ekert, A. Smerzi, J. Nehrkorn, R. Fazio, S. Montangero, Staying adiabatic with unknown energy gap arXiv: Quantum Physics. ,(2011)
Isaac L. Chuang, Michael A. Nielsen, Quantum Computation and Quantum Information ,(2000)