Schedule path optimization for quantum annealing and adiabatic quantum computing

作者: Lishan Zeng , Jun Zhang , Mohan Sarovar

DOI: 10.1088/1751-8113/49/16/165305

关键词:

摘要: Adiabatic quantum computing and optimization have garnered much attention recently as possible models for achieving a advantage over classical approaches to other special purpose computations. Both techniques are probabilistic in nature the minimum gap between ground state first excited of system during evolution is major factor determining success probability. In this work we investigate strategy increasing probability by introducing intermediate Hamiltonians that modify path initial final Hamiltonians. We focus on an problem relevant recent hardware implementations present numerical evidence existence purely local Hamiltonian achieve optimum performance terms pushing one end points evolution. As part study develop convex formulation search optimal adiabatic schedules makes computation more tractable, which may be independent interest. further effectiveness random probability, empirically find significant but only modest amount.

参考文章(41)
Matthew D Grace, Constantin Brif, Mohan Sarovar, Kevin C Young, Exploring adiabatic quantum trajectories via optimal control New Journal of Physics. ,vol. 16, pp. 065013- ,(2014) , 10.1088/1367-2630/16/6/065013
Peter Høyer, Nathan Wiebe, Nathan Wiebe, Donny Cheung, Improved error bounds for the adiabatic approximation Journal of Physics A. ,vol. 44, pp. 415302- ,(2011) , 10.1088/1751-8113/44/41/415302
A. T. Rezakhani, D. F. Abasto, D. A. Lidar, P. Zanardi, Intrinsic geometry of quantum adiabatic evolution and quantum phase transitions Physical Review A. ,vol. 82, pp. 012321- ,(2010) , 10.1103/PHYSREVA.82.012321
Daniel A. Lidar, Towards fault tolerant adiabatic quantum computation. Physical Review Letters. ,vol. 100, pp. 160506- ,(2008) , 10.1103/PHYSREVLETT.100.160506
Ari Mizel, Daniel A. Lidar, Morgan Mitchell, Simple proof of equivalence between adiabatic quantum computation and the circuit model. Physical Review Letters. ,vol. 99, pp. 070502- 070502 ,(2007) , 10.1103/PHYSREVLETT.99.070502
Kristen L. Pudenz, Tameem Albash, Daniel A. Lidar, Error-corrected quantum annealing with hundreds of qubits Nature Communications. ,vol. 5, pp. 3243- 3243 ,(2014) , 10.1038/NCOMMS4243
Boris Altshuler, Hari Krovi, Jérémie Roland, Anderson localization makes adiabatic quantum optimization fail Proceedings of the National Academy of Sciences of the United States of America. ,vol. 107, pp. 12446- 12450 ,(2010) , 10.1073/PNAS.1002116107
Michael Hofmann, Gernot Schaller, Probing nonlinear adiabatic paths with a universal integrator Physical Review A. ,vol. 89, pp. 032308- ,(2014) , 10.1103/PHYSREVA.89.032308
Alejandro Perdomo-Ortiz, Salvador E. Venegas-Andraca, Alán Aspuru-Guzik, A study of heuristic guesses for adiabatic quantum computation Quantum Information Processing. ,vol. 10, pp. 33- 52 ,(2011) , 10.1007/S11128-010-0168-Z
Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, Oded Regev, Adiabatic Quantum Computation is Equivalent to Standard Quantum Computation SIAM Journal on Computing. ,vol. 37, pp. 166- 194 ,(2007) , 10.1137/S0097539705447323