Inexact Newton Methods and Mixed Nonlinear Complementary Problems

作者: L. Bergamaschi , G. Zilli

DOI: 10.1007/3-540-45262-1_11

关键词: Nonlinear systemParallel algorithmMathematical optimizationVariational inequalityInterior point methodComplementarity theoryComputer scienceApplied mathematicsNumerical analysisNewton's methodLogarithm

摘要: In this paper we present the results obtained in solution of sparse and large systems nonlinear equations by Inexact Newton-like methods [6]. The linearized are solved with two preconditioners particularly suited for parallel computation. We report some problems on CRAY T3E under MPI environment. Our may be used to solve more general problems. Due presence a logarithmic penalty, interior point [10] mixed complementary problem [7] can indeed viewed as variant an Newton method applied particular system equations. have inexact algorithm provide numerical both sequential implementations.

参考文章(11)
J. W. He, R. Glowinski, Neumann Control of Unstable Parabolic Systems: Numerical Approach Journal of Optimization Theory and Applications. ,vol. 96, pp. 1- 55 ,(1998) , 10.1023/A:1022606915736
S. Bellavia, Inexact Interior-Point Method Journal of Optimization Theory and Applications. ,vol. 96, pp. 109- 121 ,(1998) , 10.1023/A:1022663100715
Stephen J. Wright, Primal-Dual Interior-Point Methods ,(1987)
I. Bongartz, A. R. Conn, Nick Gould, Ph. L. Toint, CUTE: constrained and unconstrained testing environment ACM Transactions on Mathematical Software. ,vol. 21, pp. 123- 160 ,(1995) , 10.1145/200979.201043
Michele Benzi, Miroslav Tuma, A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems SIAM Journal on Scientific Computing. ,vol. 19, pp. 968- 994 ,(1998) , 10.1137/S1064827595294691
Diederik R. Fokkema, Gerard L. G. Sleijpen, Henk A. Van der Vorst, Accelerated Inexact Newton Schemes for Large Systems of Nonlinear Equations SIAM Journal on Scientific Computing. ,vol. 19, pp. 657- 674 ,(1998) , 10.1137/S1064827595296148
Luca Bergamaschi, Igor Moret, Giovanni Zilli, Inexact Quasi-Newton methods for sparse systems of nonlinear equations Future Generation Computer Systems. ,vol. 18, pp. 41- 53 ,(2001) , 10.1016/S0167-739X(00)00074-1
Ron S. Dembo, Stanley C. Eisenstat, Trond Steihaug, INEXACT NEWTON METHODS SIAM Journal on Numerical Analysis. ,vol. 19, pp. 400- 408 ,(1982) , 10.1137/0719025
Michael M. Kostreva, Elasto‐hydrodynamic lubrication: A non‐linear complementarity problem International Journal for Numerical Methods in Fluids. ,vol. 4, pp. 377- 397 ,(1984) , 10.1002/FLD.1650040407