Neumann Control of Unstable Parabolic Systems: Numerical Approach

作者: J. W. He , R. Glowinski

DOI: 10.1023/A:1022606915736

关键词:

摘要: The present article is concerned with the Neumann control of systems modeled by scalar or vector parabolic equations reaction-advection-diffusion type a particular emphasis on which are unstable if uncontrolled. To solve these problems, we use combination finite-difference methods for time discretization, finite-element space and conjugate gradient algorithms iterative solution discrete problems. We apply then above methodology to test problems in two dimensions, including related nonlinear models.

参考文章(17)
Martin Berggren, Danny C. Sorensen, Optimal control of time evolution systems: controllability investigations and numerical algorithms Optimal control of time evolution systems: controllability investigations and numerical algorithms. pp. 173- 173 ,(1995)
Jerrold Bebernes, David Eberly, Mathematical Problems from Combustion Theory ,(1989)
Dwight W Decker, Herbert B Keller, Multiple limit point bifurcation Journal of Mathematical Analysis and Applications. ,vol. 75, pp. 417- 430 ,(1980) , 10.1016/0022-247X(80)90090-6
J.P Keener, H.B Keller, Positive solutions of convex nonlinear eigenvalue problems Journal of Differential Equations. ,vol. 16, pp. 103- 125 ,(1974) , 10.1016/0022-0396(74)90029-1
C. Carthel, R. Glowinski, J. L. Lions, On exact and approximate boundary controllabilities for the heat equation: a numerical approach Journal of Optimization Theory and Applications. ,vol. 82, pp. 429- 484 ,(1994) , 10.1007/BF02192213
James P. Keener, Herbert B. Keller, Perturbed bifurcation theory Archive for Rational Mechanics and Analysis. ,vol. 50, pp. 159- 175 ,(1973) , 10.1007/BF00703966
R. Glowinski, H. B. Keller, L. Reinhart, Continuation-Conjugate Gradient Methods for the Least Squares Solution of Nonlinear Boundary Value Problems SIAM Journal on Scientific and Statistical Computing. ,vol. 6, pp. 793- 832 ,(1985) , 10.1137/0906055