Continuation-Conjugate Gradient Methods for the Least Squares Solution of Nonlinear Boundary Value Problems

作者: R. Glowinski , H. B. Keller , L. Reinhart

DOI: 10.1137/0906055

关键词:

摘要: We discuss in this paper a new combination of methods for solving nonlinear boundary value problems containing parameter. Methods the continuation type are combined with least squares formulations, preconditioned conjugate gradient algorithms and finite element approximations.We can compute branches solutions limit points, bifurcation etc.Several numerical tests illustrate possibilities discussed present paper; these include Bratu problem one two dimensions, one-dimensional perturbed problems, driven cavity Navier–Stokes equations.

参考文章(31)
Herbert B. Keller, Global Homotopies and Newton Methods Recent Advances in Numerical Analysis#R##N#Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, May 22–24, 1978. pp. 73- 94 ,(1978) , 10.1016/B978-0-12-208360-0.50009-7
F. Brezzi, J. Rappaz, P. -A. Raviart, Finite dimensional approximation of nonlinear problems Numerische Mathematik. ,vol. 37, pp. 1- 28 ,(1981) , 10.1007/BF01395805
Dwight W Decker, Herbert B Keller, Multiple limit point bifurcation Journal of Mathematical Analysis and Applications. ,vol. 75, pp. 417- 430 ,(1980) , 10.1016/0022-247X(80)90090-6
R. Glowinski, O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem Siam Review. ,vol. 12, pp. 167- 212 ,(1977) , 10.1137/1021028
J.P Keener, H.B Keller, Positive solutions of convex nonlinear eigenvalue problems Journal of Differential Equations. ,vol. 16, pp. 103- 125 ,(1974) , 10.1016/0022-0396(74)90029-1