A Numerical Approach to the Control and Stabilization of Advection-Diffusion Systems: Application to Viscous Drag Reduction

作者: J. W. HE , R. GLOWINSKI , R. METACALFE , J. PERIAUX

DOI: 10.1080/10618569808940869

关键词:

摘要: Abstract In this article we investigate computational methods for the control and stabilization of systems modeled by parabolic equations advection-reaction-difTusion type Navier-Stokes incompressible viscous fluids. For first class problems wc shall discuss open loop closed a la Riccati. Concerning second consider Dirichlet boundary low around cylinders attempt to reduce drag. The results numerical experiments will validate described in article.

参考文章(11)
J. W. He, R. Glowinski, Neumann Control of Unstable Parabolic Systems: Numerical Approach Journal of Optimization Theory and Applications. ,vol. 96, pp. 1- 55 ,(1998) , 10.1023/A:1022606915736
Jerrold Bebernes, David Eberly, Mathematical Problems from Combustion Theory ,(1989)
Gal Berkooz, John Leask Lumley, Philip Holmes, Turbulence, Coherent Structures, Dynamical Systems and Symmetry ,(1996)
C. Carthel, R. Glowinski, J. L. Lions, On exact and approximate boundary controllabilities for the heat equation: a numerical approach Journal of Optimization Theory and Applications. ,vol. 82, pp. 429- 484 ,(1994) , 10.1007/BF02192213
Dong C. Liu, Jorge Nocedal, On the limited memory BFGS method for large scale optimization Mathematical Programming. ,vol. 45, pp. 503- 528 ,(1989) , 10.1007/BF01589116
M. BERGGREN, R. GLOWINSKI, J. L. LIONS, A Computational Approach to Controllability Issues for Flow-Related Models. (I): Pointwise Control of the Viscous Burgers Equation International Journal of Computational Fluid Dynamics. ,vol. 7, pp. 237- 252 ,(1996) , 10.1080/10618569608940764
R. Glowinski, J.L. Lions, Exact and approximate controllability for distributed parameter systems Acta Numerica. ,vol. 4, pp. 159- 328 ,(1994) , 10.1017/S0962492900002543
M. BERGGREN∗, R. GLOWINSKJ, J.-L. LIONS, A Computational Approach to Controllability Issues for Flow-Related Models. (II): Control of Two-Dimensional, Linear Advection-Diffusion and Stokes Models International Journal of Computational Fluid Dynamics. ,vol. 6, pp. 253- 274 ,(1996) , 10.1080/10618569608940786
Max D. Gunzburger, 3 – Finite Element Spaces Finite Element Methods for Viscous Incompressible Flows#R##N#A Guide to Theory, Practice, and Algorithms. pp. 25- 51 ,(1989) , 10.1016/B978-0-12-307350-1.50009-0