Quasisteady theory of nonequilibrium droplet evaporation and condensation

作者: Y. S. Lou , L. S. Yang

DOI: 10.1063/1.326631

关键词: Non-equilibrium thermodynamicsPhase (matter)EvaporationTransient (oscillation)Moment (physics)ChemistrySPHERESCondensationMass fluxThermodynamicsGeneral Physics and Astronomy

摘要: Using the moment method of Maxwell and quasisteady approximation, an analytical study is performed to obtain useful results for problem transient condensation on evaporation from spherical liquid (or solid) droplets, when phase not in equilibrium with its surrounding vapor. Unlike linearized theories, result this investigation mass flux or droplet surface obtained a general case finite temperature difference between It expected, therefore, that present nonequilibrium theory should be more realistic predicting rate phenomena technological interests.

参考文章(10)
Robert W. Schrage, A Theoretical Study of Interphase Mass Transfer Columbia University Press. ,(1953) , 10.7312/SCHR90162
MN. Kogan, Rarefied Gas Dynamics ,(1969)
P. N. Shankar, Kinetic Theory of Transient Condensation and Evaporation at a Plane Surface Physics of Fluids. ,vol. 14, pp. 510- 516 ,(1971) , 10.1063/1.1693464
SANG-WOOK KANG, Analysis of condensation droplet growth in rarefied and continuum environments. AIAA Journal. ,vol. 5, pp. 1288- 1295 ,(1967) , 10.2514/3.4185
Y. S. LOU, T. K. SHIH, Nonlinear Heat Conductions in Rarefied Gases AIAA Journal. ,vol. 10, pp. 1149- 1150 ,(1972) , 10.2514/3.50340
Y. S. Lou, On nonlinear droplet condensation and evaporation problem Journal of Applied Physics. ,vol. 49, pp. 2350- 2356 ,(1978) , 10.1063/1.325122
Martin Knudsen, Die maximale Verdampfungsgeschwindigkeit des Quecksilbers Annalen der Physik. ,vol. 352, pp. 697- 708 ,(1915) , 10.1002/ANDP.19153521306
Lester Lees, Kinetic Theory Description of Rarefied Gas Flow Journal of the Society for Industrial and Applied Mathematics. ,vol. 13, pp. 278- 311 ,(1965) , 10.1137/0113017
Robert E. Sampson, George S. Springer, Condensation on and evaporation from droplets by a moment method Journal of Fluid Mechanics. ,vol. 36, pp. 577- 584 ,(1969) , 10.1017/S0022112069001856