The nature of GPS differential receiver bias variability: An examination in the polar cap region

作者: David R. Themens , P. T. Jayachandran , Richard B. Langley

DOI: 10.1002/2015JA021639

关键词: Solar cycleGlobal Positioning SystemMeteorologyStandard deviationEnvironmental scienceSolar minimumTotal electron contentGeodesyIonosphereSunspotSolar maximum

摘要: While modern GPS receiver differential code bias estimation techniques have become highly refined, they still demonstrate unphysical behavior, namely, notable solar cycle variability. This study investigates the nature of these seasonal and variabilities in polar cap region using single-station methods. It is shown that minimization standard deviation technique linearly dependent on user's choice shell height, where sensitivity this dependence varies significantly from 1 total electron content unit (1 TECU = 1016 el m−2) per 4000 km minimum winter to excess TECU 90 km during maximum summer. Using an ionosonde, we find appreciable height variability resulting up 2 TECU. Comparing northward face Resolute Incoherent Scatter Radar (RISR-N) measurements a collocated station, RISR-derived biases vary seasonally but not with cycle. RMS differences between methods observation 2009 2013 were found range 2.7 TECU 3.4 TECU, depending method. To account for erroneous approaches, fit sunspot number, removing trend. errors after detrending are reduced 1.91 TECU. Also, ISR-derived sunspot-detrended ambient temperature, significant correlation found. By temperature-fitted further reduce 1.66 TECU. These results can be taken as evidence temperature-dependent dispersion cabling antenna hardware.

参考文章(37)
Dru A. Smith, Eduardo A. Araujo-Pradere, Cliff Minter, Tim Fuller-Rowell, A comprehensive evaluation of the errors inherent in the use of a two‐dimensional shell for modeling the ionosphere Radio Science. ,vol. 43, ,(2008) , 10.1029/2007RS003769
A. Coster, J. Williams, A. Weatherwax, W. Rideout, D. Herne, Accuracy of GPS total electron content: GPS receiver bias temperature dependence Radio Science. ,vol. 48, pp. 190- 196 ,(2013) , 10.1002/RDS.20011
Lars Dyrud, Aleksandar Jovancevic, Andrew Brown, Derek Wilson, Suman Ganguly, Ionospheric measurement with GPS: Receiver techniques and methods Radio Science. ,vol. 43, ,(2008) , 10.1029/2007RS003770
P. T. Jayachandran, R. B. Langley, J. W. MacDougall, S. C. Mushini, D. Pokhotelov, A. M. Hamza, I. R. Mann, D. K. Milling, Z. C. Kale, R. Chadwick, T. Kelly, D. W. Danskin, C. S. Carrano, Canadian High Arctic Ionospheric Network (CHAIN) Radio Science. ,vol. 44, ,(2009) , 10.1029/2008RS004046
Hasan Bahcivan, Roland Tsunoda, Michael Nicolls, Craig Heinselman, Initial ionospheric observations made by the new Resolute incoherent scatter radar and comparison to solar wind IMF Geophysical Research Letters. ,vol. 37, ,(2010) , 10.1029/2010GL043632
F. Arikan, H. Nayir, U. Sezen, O. Arikan, Estimation of single station interfrequency receiver bias using GPS‐TEC Radio Science. ,vol. 43, ,(2008) , 10.1029/2007RS003785
M. J. Birch, J. K. Hargreaves, G. J. Bailey, On the use of an effective ionospheric height in electron content measurement by GPS reception Radio Science. ,vol. 37, pp. 15- 1 ,(2002) , 10.1029/2000RS002601
Andrew J. Mazzella, Elizabeth A. Holland, Angela M. Andreasen, C. Charley Andreasen, G. Susan Rao, Gregory J. Bishop, Autonomous estimation of plasmasphere content using GPS measurements Radio Science. ,vol. 37, pp. 4- 1 ,(2002) , 10.1029/2001RS002520
René Warnant, Reliability of the TEC Computed Using GPS Measurements — The Problem of Hardware Biases Acta Geodaetica Et Geophysica Hungarica. ,vol. 32, pp. 451- 459 ,(2013) , 10.1007/BF03325514