Bifurcation of relative equilibria in mechanical systems with symmetry

作者: Pascal Chossat , Debra Lewis , Juan-Pablo Ortega , Tudor S. Ratiu

DOI: 10.1016/S0196-8858(02)00503-1

关键词: Nonlinear systemMathematicsTopologyHamiltonian systemEquivariant mapCritical point (mathematics)Symplectic geometryDifferential geometryPure mathematicsDynamical systems theoryAbelian group

摘要: The relative equilibria of a symmetric Hamiltonian dynamical system are the critical points so-called augmented Hamiltonian. underlying geometric structure is used to decompose point equations and construct collection implicitly defined functions reduced describing set in neighborhood given equilibrium. studied few relevant situations. In particular, persistence result Lerman Singer [Nonlinearity 11 (1998) 1637-1649] generalized framework Abelian proper actions. Also, version Equivariant Branching Lemma study bifurcations with maximal isotropy presented. An elementary example illustrates use this approach.

参考文章(46)
R. Abraham, J. E. Marsden, R. Ratiu, Manifolds, tensor analysis, and applications: 2nd edition Manifolds, tensor analysis, and applications: 2nd edition. pp. 654- 654 ,(1988)
Ralph Abraham, Jerrold Marsden, Foundations of Mechanics, Second Edition Addison-Wesley Publishing Company, Inc.. ,vol. 364, ,(1987) , 10.1090/CHEL/364
Victor Guillemin, Shlomo Sternberg, A Normal Form for the Moment Map Springer Netherlands. pp. 161- 175 ,(1984) , 10.1007/978-94-015-6874-6_11
Pascal Chossat, Gérard Iooss, The Couette-Taylor problem ,(1994)
A. Vanderbauwhede, Local bifurcation and symmetry ,(1982)
Shlomo Sternberg, Victor Guillemin, Symplectic Techniques in Physics ,(1984)
Philip J. Holmes, Jerrold E. Marsden, Horseshoes and Arnold Diffusion for Hamiltonian Systems on Lie Groups Indiana University. ,(1981) , 10.21236/ADA103562
Martin Golubitsky, Ian Stewart, Jerrold E. Marsden, Michael Dellnitz, The constrained Liapunov-Schmidt procedure and periodic orbits American Mathematical Society. ,(1995)