Alternative c-means clustering algorithms

作者: Kuo-Lung Wu , Miin-Shen Yang

DOI: 10.1016/S0031-3203(01)00197-2

关键词: Euclidean distanceFuzzy clusteringk-medians clusteringCluster analysisFuzzy logicRobustness (computer science)Correlation clusteringMathematicsMachine learningCURE data clustering algorithmArtificial intelligencePattern recognition

摘要: Abstract In this paper we propose a new metric to replace the Euclidean norm in c-means clustering procedures. On basis of robust statistic and influence function, claim that proposed is more than norm. We then create two methods called alternative hard (AHCM) fuzzy (AFCM) algorithms. These types have robustness clustering. Numerical results show AHCM has better performance HCM AFCM FCM. recommend for use cluster analysis. Recently, algorithm successfully been used segmenting magnetic resonance image Ophthalmology differentiate abnormal tissues from normal tissues.

参考文章(13)
M.-S. Yang, A survey of fuzzy clustering Mathematical and Computer Modelling. ,vol. 18, pp. 1- 16 ,(1993) , 10.1016/0895-7177(93)90202-A
Peter J. Huber, Robust Estimation of a Location Parameter Springer Series in Statistics. ,vol. 35, pp. 492- 518 ,(1992) , 10.1007/978-1-4612-4380-9_35
I. Gath, A.B. Geva, Unsupervised optimal fuzzy clustering IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 11, pp. 773- 780 ,(1989) , 10.1109/34.192473
RAJESH N. DAVE, FUZZY SHELL-CLUSTERING AND APPLICATIONS TO CIRCLE DETECTION IN DIGITAL IMAGES International Journal of General Systems. ,vol. 16, pp. 343- 355 ,(1990) , 10.1080/03081079008935087
Miin-Shen Yang, Cheng-Hsiu Ko, On cluster-wise fuzzy regression analysis systems man and cybernetics. ,vol. 27, pp. 1- 13 ,(1997) , 10.1109/3477.552181
Miin-Shen Yang, Yu-Jen Hu, Karen Chia-Ren Lin, Charles Chia-Lee Lin, Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms. Magnetic Resonance Imaging. ,vol. 20, pp. 173- 179 ,(2002) , 10.1016/S0730-725X(02)00477-0
R. Krishnapuram, J.M. Keller, A possibilistic approach to clustering IEEE Transactions on Fuzzy Systems. ,vol. 1, pp. 98- 110 ,(1993) , 10.1109/91.227387