Applications of variable-order fractional operators: a review.

作者: Sansit Patnaik , John P. Hollkamp , Fabio Semperlotti

DOI: 10.1098/RSPA.2019.0498

关键词: Development (topology)Physical systemContext (language use)Fractional calculusComputer scienceVariable (mathematics)Scientific modellingManagement scienceField (computer science)Control theory

摘要: … Variable-order fractional operators were conceived and mathematically formalized only in … , to transport processes, to control theory, to biology. Variable-order fractional calculus (VO-FC…

参考文章(175)
Fidel Santamaria, Stefan Wils, Erik De Schutter, George J Augustine, None, Anomalous Diffusion in Purkinje Cell Dendrites Caused by Spines Neuron. ,vol. 52, pp. 635- 648 ,(2006) , 10.1016/J.NEURON.2006.10.025
H.G. Sun, W. Chen, H. Wei, Y.Q. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems European Physical Journal-special Topics. ,vol. 193, pp. 185- 192 ,(2011) , 10.1140/EPJST/E2011-01390-6
VASILY E. TARASOV, Review of Some Promising Fractional Physical Models International Journal of Modern Physics B. ,vol. 27, pp. 1330005- ,(2013) , 10.1142/S0217979213300053
H. Zhang, F. Liu, Mantha S. Phanikumar, Mark M. Meerschaert, A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model Computers & Mathematics With Applications. ,vol. 66, pp. 693- 701 ,(2013) , 10.1016/J.CAMWA.2013.01.031
Abdon Atangana, Joseph Francois Botha, A generalized groundwater flow equation using the concept of variable-order derivative Boundary Value Problems. ,vol. 2013, pp. 53- ,(2013) , 10.1186/1687-2770-2013-53
Dominik Sierociuk, Wiktor Malesza, Michal Macias, On a new definition of fractional variable-order derivative international carpathian control conference. pp. 340- 345 ,(2013) , 10.1109/CARPATHIANCC.2013.6560566
Fanhai Zeng, Zhongqiang Zhang, George Em Karniadakis, A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations SIAM Journal on Scientific Computing. ,vol. 37, ,(2015) , 10.1137/141001299
S. Sahoo, S. Saha Ray, S. Das, R. K. Bera, The formation of dynamic variable order fractional differential equation International Journal of Modern Physics C. ,vol. 27, pp. 1650074- ,(2016) , 10.1142/S0129183116500741
Guo-Cheng Wu, Dumitru Baleanu, He-Ping Xie, Sheng-Da Zeng, Discrete Fractional Diffusion Equation of Chaotic Order International Journal of Bifurcation and Chaos. ,vol. 26, pp. 1650013- ,(2016) , 10.1142/S0218127416500139
B. Parsa Moghaddam, Sh. Yaghoobi, J. A. Tenreiro Machado, An Extended Predictor–Corrector Algorithm for Variable-Order Fractional Delay Differential Equations Journal of Computational and Nonlinear Dynamics. ,vol. 11, pp. 061001- ,(2016) , 10.1115/1.4032574