Sobolev spaces with weights in domains and boundary value problems for degenerate elliptic equations

作者: S. V. Lototsky

DOI: 10.4310/MAA.2000.V7.N1.A9

关键词: Sobolev inequalitySobolev spaces for planar domainsLp spaceSobolev spaceElliptic boundary value problemInterpolation spaceMathematicsDomain (mathematical analysis)Trace operatorMathematical analysis

摘要: A family of Banach spaces is introduced to control the interior smoothness and boundary behavior functions in a general domain. In- terpolation, embedding, other properties are studied. As an application, certain degenerate second-order elliptic partial dierential equation considered.

参考文章(9)
Hans Triebel, Theory of Function Spaces III ,(2008)
Hans Triebel, Theory of function spaces ,(1983)
Jacques Louis Lions, Enrico Magenes, Non-homogeneous boundary value problems and applications ,(1972)
N.V Krylov, Weighted Sobolev spaces and Laplace's equation and the heat equations in a half space Communications in Partial Differential Equations. ,vol. 24, pp. 1611- 1653 ,(1999) , 10.1080/03605309908821478
N. V. Krylov, S. V. Lototsky, A Sobolev Space Theory of SPDE with Constant Coefficients on a Half Line SIAM Journal on Mathematical Analysis. ,vol. 30, pp. 298- 325 ,(1999) , 10.1137/S0036141097326908
Sergey V. Lototsky, Dirichlet problem for stochasticparabolic equations in smoothdomains Stochastics and Stochastics Reports. ,vol. 68, pp. 145- 175 ,(1999) , 10.1080/17442509908834221